【題目】已知數(shù)列{an}滿足a1= ,an+1an=2an+1﹣1(n∈N*),令bn=an﹣1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求證:c1+c2+…+cn<n+ .
【答案】
(1)解:∵an+1an=2an+1﹣1(n∈N*),bn=an﹣1,即an=bn+1.
∴(bn+1+1)(bn+1)=2(bn+1+1)﹣1,化為: ﹣ =﹣1,
∴數(shù)列 是等差數(shù)列,首項(xiàng)為﹣2,公差為﹣1.
∴ =﹣2﹣(n﹣1)=﹣1﹣n,∴bn=﹣ .
(2)證明:由(1)可得:an=bn+1=1﹣ = .
∴cn= = = =1+ ,
∵n≥2時(shí),2n+2≤2n+1﹣1,∴ < ,
∴c1+c2+…+cn≤n+ + =n+ ﹣ <n+ .
【解析】(1)an+1an=2an+1﹣1(n∈N*),bn=an﹣1,即an=bn+1.代入化為: ﹣ =﹣1,利用等差數(shù)列的通項(xiàng)公式即可得出.(2)由(1)可得:an=bn+1=1﹣ = .代入cn= =1+ ,由于n≥2時(shí),2n+2≤2n+1﹣1,可得 < ,利用“裂項(xiàng)求和”、數(shù)列的單調(diào)性即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}則下列判斷正確的是( )
A.PQR
B.PRQ
C.QPR
D.RPQ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中, , , , 分別為, 的中點(diǎn).將沿折起到的位置,使,如圖2,連結(jié), .
(Ⅰ)求證:平面 平面;
(Ⅱ)若為中點(diǎn),求直線與平面所成角的正弦值;
(Ⅲ)線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).記Sn=a1+a2+…+an . Tn= + +…+ .求證:當(dāng)n∈N*時(shí)
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形, , , ,四邊形為正方形,平面平面.
(1)若點(diǎn)是棱的中點(diǎn),求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某高中甲、乙兩個(gè)班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示.
(1)甲班和乙班同學(xué)身高的中位數(shù)各是多少?并計(jì)算甲班樣本的方差.
(2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取2名身高不低于173 cm的同學(xué),求身高為176 cm的同學(xué)被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上的動(dòng)點(diǎn), 的坐標(biāo)為, 在線段上,滿足.
(Ⅰ)求的軌跡的方程.
(Ⅱ)過點(diǎn)的直線與交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a>0,b>0,函數(shù)f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設(shè)函數(shù)g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(shù)(x)<f(x),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com