已知實數(shù)x,y滿足
y≤1
y≥|x-1|
,若x+2y≤a恒成立,則a的最小值為
4
4
分析:先根據(jù)約束條件畫出可行域,設(shè)z=x+2y,再利用z的幾何意義求最大值,只需求出直線z=x+2y過可行域內(nèi)的角點時,從而得到z=x+2y的最大值,再根據(jù)x+2y≤a恒成立,即a大于等于z=x+2y的最大值即可得到a的最小值.
解答:解:先根據(jù)約束條件畫出可行域,
設(shè)z=x+2y,
將z的值轉(zhuǎn)化為直線z=x+2y在y軸上的截距,
當直線z=x+2y經(jīng)過點A(2,1)時,z最大,最大值為4.
若x+2y≤a恒成立,則a≥4
則a的最小值為 4.
故答案為:4.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤8
,則目標函數(shù)z=x2+(y-3)2的最小值為
16
5
16
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標函數(shù)z=x-y的最小值的取值范圍是[-3,-2],則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)已知實數(shù)x,y滿足
y-x≥1
x+y≤1
-2x+y≤2
,則當z=3x-y取得最小值時(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足y=x2-2x+2(-1≤x≤1),則
y+3
x+2
的最大值與最小值的和為
28
3
28
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y≤1
y≥|x-1|
,則3x-y的最大值是
5
5

查看答案和解析>>

同步練習冊答案