計(jì)算:log4(1+
2
+
3
)+log4(1+
2
-
3
)的值等于
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,利用對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.
解答: 解:log4(1+
2
+
3
)+log4(1+
2
-
3

=log4(1+
2
+
3
)(1+
2
-
3

=log4(2
2

=
3
4

故答案為:
3
4
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三條邊AB,AC,BC的中點(diǎn)的坐標(biāo)分別是(2,1),(-3,4),(-2,1),則△ABC的重心的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2-3a+2≤0,求
(2a-1)2
+
(5-2a)2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足以下關(guān)系式Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅲ)設(shè)Pn=4n+(-1)n-1•λ•2an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,有Pn+1>Pn恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(1-x2) 集合A={x|y=f(x)},B={y|y=f(x)},則圖中陰影部分表示的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若a>1,試判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(3)若已知f(1)=
8
3
,且函數(shù)g(x)=a2x+a-2x-2mf(x)在區(qū)間[1,+∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=1nx的一條切線與直線y=-x垂直,則該切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:3-2cos2α=
3tan2α+1
tan2α+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲運(yùn)動(dòng)員得分的中位數(shù),乙運(yùn)動(dòng)員的平均數(shù)分別為( 。
A、15、12
B、15、15
C、19、11
D、19、15

查看答案和解析>>

同步練習(xí)冊(cè)答案