已知函數(shù),a為正常數(shù).

(1)若,且,求函數(shù)f(x)的單調(diào)增區(qū)間;

(2)若,且對(duì)任意,都有,求a的的取值范圍.

答案:
解析:

  解:(1)  2分

  ∵,令,得,或,

  ∴函數(shù)的單調(diào)增區(qū)間為  6分

  (2)∵,∴

  ∴  8分

  設(shè),依題意,上是減函數(shù).

  當(dāng)時(shí),,,

  令,得:對(duì)恒成立,

  設(shè),則

  ∵,∴

  ∴上是增函數(shù),則當(dāng)時(shí),有最大值為,

  ∴  10分

  當(dāng)時(shí),,

  令,得:,

  設(shè),則

  ∴上是增函數(shù),∴

  ∴  12分

  綜上所述,  13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南京外國(guó)語(yǔ)學(xué)校高三考前適應(yīng)性測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a為正常數(shù).
(1)若f(x)=lnx+φ(x),且a=,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在(1)中當(dāng)a=0時(shí),函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)為C(x,y),記直線AB的斜率為k,試證明:k>f'(x).
(3)若g(x)=|lnx|+φ(x),且對(duì)任意的x1,x2∈(0,2],x1≠x2,都有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省天一中學(xué)、海門中學(xué)、鹽城中學(xué)聯(lián)考高三(下)2月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a為正常數(shù).
(1)若f(x)=lnx+φ(x),且a=,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在(1)中當(dāng)a=0時(shí),函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)為C(x,y),記直線AB的斜率為k,試證明:k>f'(x).
(3)若g(x)=|lnx|+φ(x),且對(duì)任意的x1,x2∈(0,2],x1≠x2,都有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,a為正常數(shù).
(1)若f(x)=lnx+φ(x),且數(shù)學(xué)公式,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若g(x)=|lnx|+φ(x),且對(duì)任意x1,x2∈(0,2],x1≠x2,都有數(shù)學(xué)公式,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州市八縣(市)一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),a為正常數(shù).
(1)若f(x)=lnx+φ(x),且,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若g(x)=|lnx|+φ(x),且對(duì)任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州大學(xué)附中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知函數(shù),a為正常數(shù).
(1)若f(x)=lnx+φ(x),且,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若g(x)=|lnx|+φ(x),且對(duì)任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案