如圖,在正方體ABCD-A1B1C1D1中,已知M是棱AB的中點.求證:
(1)B1C⊥平面ABC1,
(2)直線AC1∥平面B1MC.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關系與距離
分析:(1)由已知得B1C⊥BC1,從而AB⊥平面BCC1B1,進而B1C⊥AB,由此能證明B1C⊥平面ABC1
(2)連結BC1交CB1于N,連結MN,由已知條件得MN∥AC1,由此能證明直線AC1∥平面B1MC.
解答: 證明:(1)正方體ABCD-A1B1C1D1中,B1C⊥BC1,
∴AB⊥平面BCC1B1,
∵CB1?平面BCC1B1
∴B1C⊥AB,
又∵AB∩BC1=B,
∴B1C⊥平面ABC1,
(2)如圖,連結BC1交CB1于N,連結MN,
∵在正方體ABCD-A1B1C1D1中,
∴N是BC1的中點,
又∵M是棱AB的中點,
∴MN∥AC1,
又∵MN?平面B1MC,AC1?平面B1MC,
∴直線AC1∥平面B1MC.
點評:本題考查直線與平面垂直的證明,考查直線與平面平行的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
9
+
y2
5
=1的焦點,點P在橢圓上且∠F1PF2=
π
3
,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
t?e2x
x
的定義域為(0,+∞).
(1)求f(x)的單調區(qū)間;
(2)若f(x)≥2e在其定義域內恒成立,求實數(shù)t的取值范圍;
(3)求證:
n
i=1
1
i•e2i
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知增函數(shù)y=f(x)的定義域為(0,+∞)且滿足f(2)=1,f(xy)=f(x)+f(y),求滿足f(x)+f(x-3)≤2的x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=3sin(
π
6
-2x)(-
1
24
π<x<
5
12
π)的單調區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x-cos2x+1,且x∈[0,2π].
(1)求f(x)的值域;         
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,A1,A2;B1,B2分別為橢圓的長軸和短軸的端點(如圖).若四邊形B1F1B2F2的面積為2
3

(Ⅰ)求橢圓C的方程.
(Ⅱ)拋物線E:y2=2px(p>0)的焦點與橢圓C的右焦點重合,過點N(5,2)任意作一條直線l,交拋物線E于A,B兩點.證明:以AB為直徑的所有圓是否過拋物線E上一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項之和Sn=2n-1,則它的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體P-ABC,∠PAB=∠BAC=∠PAC=60°,|
AB
|=1,|
AC
|=2,|
AP
|=3,則|
AB
+
AC
+
AP
|=
 

查看答案和解析>>

同步練習冊答案