精英家教網 > 高中數學 > 題目詳情

【題目】平面直角坐標系中,曲線的參數方程為為參數,且.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.

【答案】1.2

【解析】

1)化簡得到,再考慮,利用極坐標方程公式得到答案.

2P的直角坐標為,設點,故,代入圓方程得到M在圓心為,半徑為1的圓上,計算得到最大距離.

1)因為,所以+4×②,得.

,

所以的普通方程為,

,代入曲線的極坐標方程,得曲線的直角坐標方程為.

2)由點P的極坐標,可得點P的直角坐標為.

設點,因為M的中點,所以

Q代入的直角坐標方程得,

M在圓心為,半徑為1的圓上.

所以點M到曲線距離的最大值為,

由(1)知不過點,且,

即直線不垂直.

綜上知,M到曲線的距離的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,若棱,,兩兩垂直,長度分別為1,2,2,且向量夾角的余弦值為.

1)求的長度;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系內,曲線的參數方程為為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為

1)把曲線和直線化為直角坐標方程;

2)過原點引一條射線分別交曲線和直線,兩點,射線上另有一點滿足,求點的軌跡方程(寫成直角坐標形式的普通方程).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產品(這兩個公司每天都固定生產50件產品),所生產的產品均在本地銷售.產品進人市場之前需要對產品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進人市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產情況及每件產品盈利虧損情況,數據如表所示:

1

甲公司

得分

[5060

[60,70

[70,80

[80,90

[90,100]

件數

10

10

40

40

50

天數

10

10

10

10

80

2

甲公司

得分

[50,60

[60,70

[70,80

[80,90

[90100]

件數

10

5

40

45

50

天數

20

10

20

10

70

3

每件正品

每件次品

甲公司

2萬元

3萬元

乙公司

3萬元

3.5萬元

1)分別求甲、乙兩個公司這100天生產的產品的正品率(用百分數表示).

2)試問甲、乙兩個公司這100天生產的產品的總利潤哪個更大?說明理由.

3)若以甲公司這100天中每天產品利潤總和對應的頻率作為概率,從甲公司這100天隨機抽取1天,記這天產品利潤總和為X,求X的分布列及其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系中,曲線的參數方程為為參數,且.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點到達點的位置,且.

1)證明:平面

2)若的中點,二面角等于60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知圓和圓的極坐標方程分別是.

1)求圓和圓的公共弦所在直線的直角坐標方程;

2)若射線與圓的交點為OP,與圓的交點為OQ,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一條東西流向的筆直河流,現(xiàn)利用航拍無人機監(jiān)控河流南岸相距150米的兩點處(的正西方向),河流北岸的監(jiān)控中心的正北方100米處,監(jiān)控控制車的正西方向,且在通向的沿河路上運動,監(jiān)控過程中,保證監(jiān)控控制車到無人機和到監(jiān)控中心的距離之和150米,平面始終垂直于水平面,且,兩點間距離維持在100.

1)當監(jiān)控控制車到監(jiān)控中心的距離為100米時,求無人機距離水平面的距離;

2)若記無人機處的俯角(),監(jiān)控過程中,四棱錐內部區(qū)域的體積為監(jiān)控影響區(qū)域,請將表示為關于的函數,并求出監(jiān)控影響區(qū)域的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的右焦點為F到直線的距離為,拋物線的焦點與橢圓E的焦點F重合,過F作與x軸垂直的直線交橢圓于ST兩點,交拋物線于C,D兩點,且

1)求橢圓E及拋物線G的方程;

2)過點F且斜率為k的直線l交橢圓于A,B點,交拋物線于M,N兩點,如圖所示,請問是否存在實常數,使為常數,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案