已知橢圓C:,一個(gè)頂點(diǎn)為A(0,2)
(1)若將橢圓C繞點(diǎn)P(1,2)旋轉(zhuǎn)180°得到橢圓D,求橢圓D方程
(2)若橢圓C與直線y=kx+m (k≠0)相交于不同的M、N兩點(diǎn),且|AM|=|AN|,
求m的取值范圍.
【答案】分析:(1)橢圓C的對(duì)稱中心(0,0)關(guān)于點(diǎn)P(1,2)的對(duì)稱點(diǎn)為(2,4),且對(duì)稱軸平行于坐標(biāo)軸,長(zhǎng)軸、短軸的長(zhǎng)度不變.
(2)把M(x1,y1)、N(x2,y2),代入橢圓C相減,利用斜率公式及A在線段MN的中垂線上,求得y1+y2=-2,x1+x2=-6k,把y=kx+m代入橢圓C:化為關(guān)于x的一元二次方程,再利用判別式大于0,求出m的取值范圍.
解答:解:(1)由題意得,橢圓C的對(duì)稱中心(0,0)關(guān)于點(diǎn)P(1,2)的對(duì)稱點(diǎn)為(2,4),且對(duì)稱軸平行于坐標(biāo)軸,
長(zhǎng)軸、短軸的長(zhǎng)度不變,故將橢圓C繞點(diǎn)P(1,2)旋轉(zhuǎn)180°得到橢圓D的方程為 +=1.
(2) 設(shè)M(x1,y1)、N(x2,y2),∵|AM|=|AN|,∴A在線段MN的中垂線上.
 把M(x1,y1)、N(x2,y2),代入橢圓C:的方程得:+=1,①
+=1  ②,用①減去②得:=,
∴k==-×,再由中垂線的性質(zhì)得 ==,
=,∴y1+y2=-2,∴x1+x2=-3k(y1+y2)=-6k,
故MN的中點(diǎn)(-3k,-1),
把y=kx+m代入橢圓C:得,(1+3k2)x2+6kmx+3m2-12=0,
∴x1+x2=-6k=,∴m=1+3k2,∴mx2+6kmx+3m2-12=0,
由題意知,判別式大于0,即 36k2m2-4m(3m2-12)>0,
36××m2-12m3+48m>0,m(m-4)<0,∴0<m<4,
故 m的取值范圍為 (0,4).
點(diǎn)評(píng):本題考查利用對(duì)稱法求橢圓的標(biāo)準(zhǔn)方程,斜率公式、中點(diǎn)公式的應(yīng)用,以及一元二次方程有兩個(gè)根的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓)的一個(gè)頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn)、.(1) 求橢圓的方程;(2) 當(dāng)的面積為時(shí),求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:數(shù)學(xué)公式,一個(gè)頂點(diǎn)為A(0,2)
(1)若將橢圓C繞點(diǎn)P(1,2)旋轉(zhuǎn)180°得到橢圓D,求橢圓D方程
(2)若橢圓C與直線y=kx+m (k≠0)相交于不同的M、N兩點(diǎn),且|AM|=|AN|,
求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(北京卷解析版) 題型:解答題

已知橢圓C: 的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線與橢圓C交于不同的兩點(diǎn)M,N。

(1)   求橢圓C的方程

(2)   當(dāng)的面積為時(shí),求k的值。

【解析】(1)∵ ∴

(2)

,

化簡(jiǎn)得:,解得

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0101 期中題 題型:解答題

已知橢圓C:,一個(gè)頂點(diǎn)為A(0,2)。
(1)若將橢圓C繞點(diǎn)P(1,2)旋轉(zhuǎn)180°得到橢圓D,求橢圓D的方程;
(2)若橢圓C與直線y=kx+m(k≠0)相交于不同的M、N兩點(diǎn),且|AM|=|AN|,求m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案