如圖,棱柱的側(cè)面是菱形,。
(1)證明:平面
(2)設(shè)D是上的點(diǎn)且,求的值。
解:(Ⅰ)因為側(cè)面BCC1B1是菱形,所以
又已知
所又平面A1BC1,又平面AB1C ,
所以平面平面A1BC1 .
(Ⅱ)設(shè)BC1交B1C于點(diǎn)E,連結(jié)DE, 則DE是平面A1BC1與平面B1CD的交線,
因為A1B//平面B1CD,所以A1B//DE.
又E是BC1的中點(diǎn),所以D為A1C1的中點(diǎn).即A1D:DC1=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD。

(I)證明:PQ⊥平面DCQ;
(II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在直三棱柱中,,,為的中點(diǎn).(1)求證:⊥平面;(2)設(shè)上一點(diǎn),試確定的位置,使平面⊥平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“如果一條直線與一個平面垂直,則稱這條直線與這個平面構(gòu)成一組正交線面對;如果兩個平面互相垂直,則稱這兩個平面構(gòu)成一組正交平面對.”在正方體的12條棱和6個表面中,能構(gòu)成正交線面對和正交平面對的組數(shù)分別是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“a,b為異面直線”是指:
,且a與b不平行;                ②a平面,b平面,且
③a平面,b平面,且;  ④a平面,b平面;
⑤不存在平面,能使a且b成立。
上述結(jié)論中,正確的是 
A.①④⑤正確B.①⑤正確C.②④正確D.①③④正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四邊形為矩形,且,,上的動點(diǎn).
(1) 當(dāng)的中點(diǎn)時,求證:;
(2) 設(shè),在線段上存在這樣的點(diǎn)E,使得二面角的平面角大小為. 試確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:
①若;
②②若
③如果相交;
④若
其中正確的命題是 (   )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,中點(diǎn)。(1)求證:平面
(2)在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案