(1)已知cos(
π
6
+α)=
3
2
,求cos(
6
-α)的值;
(2)已知π<α<2π,cos(α-7π)=-
3
5
,求sin(3π+α)•tan(α-
7
2
π
)的值.
考點:運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)直接利用誘導(dǎo)公式求得cos(
6
-α)的值.
(2)由條件利用誘導(dǎo)公式求得 cosα=
3
5
.再利用誘導(dǎo)公式化簡sin(3π+α)•tan(α-
7
2
π
),可得結(jié)果.
解答: 解:(1)cos(
6
-α)=-cos[π-(
6
-α)]=-cos(
π
6
+α)=-
3
2

(2)∵π<α<2π,cos(α-7π)=cos(7π-α)=-cosα=-
3
5
,∴cosα=
3
5

∴sin(3π+α)•tan(α-
7
2
π
)=-sinα•tan(
π
2
+α)=-sinα•(-cotα)=cosα=
3
5
點評:本題主要考查利用誘導(dǎo)公式進行化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)設(shè)計的算法流程圖用以計算和式12+22+32+…+20152的值,則在判斷框中應(yīng)填寫( 。
A、i≤2015
B、i≤2016
C、≥2015
D、i≥2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C中心為坐標(biāo)原點,焦點在y軸上,過點M(
3
2
,-1),離心率為
3
2

(1)求橢圓C的方程.
(2)若A,B為橢圓C上的動點,且
OA
OB
(其中O為坐標(biāo)原點).求證:直線AB與定圓相切.并求該圓的方程與△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,且滿足i2=-1,a∈R,復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對應(yīng)的點為M,則“a=1”是“點M在第四象限”的
 
條件(選填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的公差為2,a3,a4,a7成等比數(shù)列,則{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC的頂點A(-1,2),B(2,5),C(1,7)
(1)與BC平行的中位線所在直線方程;
(2)BC邊上的高所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1、F2,這兩條曲線在第一象限的交點為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2 的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log37=a,log23=b,試以a、b的式子表示log4256=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
a
x
(x>0))的最小值為6,則正數(shù)a的值為( 。
A、1B、4C、9D、16

查看答案和解析>>

同步練習(xí)冊答案