【題目】電視臺(tái)應(yīng)某企業(yè)之約播放兩套連續(xù)劇,其中,連續(xù)劇甲每次播放時(shí)間80分鐘,其中廣告時(shí)間1分鐘,收視觀眾60萬;連續(xù)劇乙每次播放時(shí)間40分鐘,其中廣告時(shí)間1分鐘,收視觀眾20萬.現(xiàn)在企業(yè)要求每周至少播放廣告6分鐘,而電視臺(tái)每周至多提供320分鐘節(jié)目時(shí)間.

(1)設(shè)每周安排連續(xù)劇甲次,連續(xù)劇乙次,列出,所應(yīng)該滿足的條件;

(2)應(yīng)該每周安排兩套電視劇各多少次,收視觀眾最多?

【答案】(1)(2)每周應(yīng)安排甲、乙連續(xù)劇2套、4套

【解析】

(1)依題意確定等量關(guān)系即可列出,所應(yīng)該滿足的條件;

(2)由題意得出目標(biāo)函數(shù),結(jié)合(1)中約束條件作出可行域,結(jié)合可行域即可求出最值.

(1)由題意可得:

(2)收視觀眾數(shù)為萬,則,所以,因此直線在y軸截距最大時(shí),取最大值;

畫出可行域

易知當(dāng),時(shí),有最大值,最大值是200,收視觀眾200萬.

每周應(yīng)安排甲、乙連續(xù)劇2套、4套

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APC,BCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè),討論的單調(diào)性;

(2)若不等式恒成立,其中為自然對(duì)數(shù)的底數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)人下半身長(zhǎng)(肚臍至足底)與全身長(zhǎng)的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測(cè)得頭頂至肚臍長(zhǎng)度為72,肚臍至足底長(zhǎng)度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計(jì)師的你,對(duì)TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時(shí)穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對(duì)于給定的正整數(shù),若數(shù)列中首個(gè)值為1的項(xiàng)為,我們定義,則_____.設(shè)集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長(zhǎng)方形中,的中點(diǎn),為線段上一動(dòng)點(diǎn).現(xiàn)將沿折起,形成四棱錐.

(1)若重合,且(如圖2).證明:平面;

(2)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)量監(jiān)督局檢測(cè)某種產(chǎn)品的三個(gè)質(zhì)量指標(biāo),用綜合指標(biāo)核定該產(chǎn)品的等級(jí).若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足”,求事件的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案