13.設(shè)集合A={x|$\frac{2}{x-1}$≥1},B={y|y=log2x,0<x≤4},則A∩B=( 。
A.B.(1,2]C.(-∞,1)D.[2,3]

分析 先化簡(jiǎn)集合A,B再根據(jù)交集的定義即可求出.

解答 解:由$\frac{2}{x-1}$≥1,即$\frac{2}{x-1}$-1≥0,即$\frac{3-x}{x-1}$≥0,解得1<x≤3,即A=(1,3],
B={y|y=log2x,0<x≤4}=(-∞,2],
則A∩B=(1,2],
故選:B.

點(diǎn)評(píng) 本題考查了不等式的解法和集合的交集的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知全集U=R,集合A={x|ex>1},B={x|x-3>0},則A∩B=(  )
A.{x|x<3}B.{x|x>0}C.{x|1<x<3}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,2a7-a8=5,則S11為( 。
A.110B.55C.50D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$\frac{z}{(1+i)^{2}}$=1-i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.(2,-2)B.(2,2)C.(-2,-2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖程序框圖,輸出的S為( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x,y滿足$\left\{\begin{array}{l}{x+y≥4}\\{{x}^{2}+{y}^{2}≤16}\end{array}\right.$,則z=x2+6x+y2+8y+25的取值范圍是( 。
A.[$\frac{121}{2}$,81]B.[$\frac{121}{2}$,73]C.[65,73]D.[65,81]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.f(x)=|x+a|+|x-a2|,a∈(-1,3)
(1)若a=1,解不等式f(x)≥4
(2)若對(duì)?x∈R,?a∈(-1,3),使得不等式m<f(x)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果不等式x2+ax+1≥0恒成立,則方程x2-2x+a2=0有實(shí)根的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.由直線y=x+2上的點(diǎn)向圓(x-4)2+(y+2)2=1引切線,則切線長(zhǎng)的最小值為( 。
A.$4\sqrt{2}$B.$\sqrt{31}$C.$\sqrt{33}$D.$4\sqrt{2}-1$

查看答案和解析>>

同步練習(xí)冊(cè)答案