分析 根據(jù)條件下求出a=2,然后討論雙曲線的焦點位置,結(jié)合雙曲線的漸近線方程進行求解即可.
解答 解:∵雙曲線的漸近線方程為y=±$\frac{1}{2}$x,實軸長為4,
∴2a=4,則a=2,
∴當雙曲線的焦點在x軸上時,設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,a>0,b>0,
此時$\frac{a}$=$\frac{2}$=$\frac{1}{2}$,解得b=1,
∴雙曲線方程為$\frac{{x}^{2}}{4}$-y2=1.
當雙曲線的焦點在y軸上時,設(shè)雙曲線方程為$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1,a>0,b>0,
此時$\frac{a}$=$\frac{2}$=$\frac{1}{2}$,解得b=4,
即雙曲線的方程為$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{16}$=1.
故答案為:$\frac{{x}^{2}}{4}$-y2=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{16}$=1.
點評 本題考查雙曲線的標準方程的求法,是中檔題,解題時要認真審題,注意雙曲線性質(zhì)的合理運用.同時要討論雙曲線的焦點位置.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{3}{4}-6ln\frac{3}{2},2-6ln2)$ | B. | (2-6ln2,+∞) | ||
C. | $(-\frac{3}{4}-6ln\frac{3}{2},6ln2-2)$ | D. | (-∞,6ln2-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5,32 | B. | 5,19 | C. | 1,32 | D. | 4,35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com