分析 (1)利用向量共線定理即可證明;
(2)B、D、F三點(diǎn)共線,可知:存在實(shí)數(shù)λ,使$\overrightarrow{BF}=λ\overrightarrow{BD}$,代入計(jì)算利用$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)不共線向量即可得出.
解答 (1)證明:$\overrightarrow{BD}$=$\overrightarrow{CD}-\overrightarrow{CB}$=2$\overrightarrow{a}$-$\overrightarrow$-($\overrightarrow{a}$+3$\overrightarrow$)=$\overrightarrow{a}$-4$\overrightarrow$,
∴$\overrightarrow{AB}=2\overrightarrow{BD}$,B為公共點(diǎn),
∴A、B、D三點(diǎn)共線.
(2)∵B、D、F三點(diǎn)共線,∴存在實(shí)數(shù)λ,使$\overrightarrow{BF}=λ\overrightarrow{BD}$,
∴4$\overrightarrow{a}$-k$\overrightarrow$=λ$(\overrightarrow{a}-4\overrightarrow)$,
∴$(4-λ)\overrightarrow{a}$=(k-4λ)$\overrightarrow$,
∵$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)不共線向量,
∴4-λ=k-4λ=0,
解得k=16.
點(diǎn)評(píng) 本題考查了向量共線定理、向量線性運(yùn)算性質(zhì)、向量共面定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 18 | C. | 24 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 26 | D. | $\sqrt{26}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-3y-1=0 | B. | x+3y-2=0 | C. | 2x+3y=0 | D. | 3x-2y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 終邊在x軸負(fù)半軸上的角是零角 | B. | 第二象限角一定是鈍角 | ||
C. | 第四象限角一定是負(fù)角 | D. | 若β=α+k•360°(k∈Z),則α與β終邊相同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin$\frac{1}{2}$ | B. | cos$\frac{1}{2}$ | C. | 2sin$\frac{1}{2}$-cos$\frac{1}{2}$ | D. | 2cos$\frac{1}{2}$-sin$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com