執(zhí)行如圖所示的程序框圖,輸出的k值為(  )
A、3B、4C、5D、6
考點:程序框圖
專題:算法和程序框圖
分析:由已知中的程序框圖,可得該程序的功能是利用循環(huán)計算并輸出滿足條件的k值,模擬程序的運(yùn)行過程,可得答案.
解答: 解:進(jìn)行循環(huán)前,k=1,s=0
第一次執(zhí)行循環(huán)體后,s=1,滿足繼續(xù)循環(huán)的條件,k=2
第二次執(zhí)行循環(huán)體后,s=7,滿足繼續(xù)循環(huán)的條件,k=3
第三次執(zhí)行循環(huán)體后,s=34,滿足繼續(xù)循環(huán)的條件,k=4
第四次執(zhí)行循環(huán)體后,s=142,不滿足繼續(xù)循環(huán)的條件,故輸出k值為4
故選:B
點評:本題考查的知識點是程序框圖,在寫程序的運(yùn)行結(jié)果時,我們常使用模擬循環(huán)的辦法,但程序的循環(huán)體中變量比較多時,要用表格法對數(shù)據(jù)進(jìn)行管理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)直線B1C1到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-
x
)20
的展開式中,系數(shù)為有理數(shù)的項共有
 
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=τ(A),已知P0(x0,y0),(x0,y0∈Z)為平面上一個定點,平面上點列{Pi}滿足:Pi=τ(Pi-1),且點Pi的坐標(biāo)為(xi,yi),其中i=1,2,3,…,n,則點P0的“相關(guān)點”有( 。﹤.
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①兩組對應(yīng)邊相等的三角形是全等三角形;
②“若xy=0,則|x|+|y|=0”的逆命題;
③“若a>b,則2x•a>2x•b”的否命題;
④“矩形的對角線互相垂直”的逆否命題.
其中真命題共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的可導(dǎo)函數(shù),且滿足f(x)>f′(x),對任意正實數(shù)a,下面不等式恒成立的是( 。
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax-1
x+1
,其中a∈R
(1)解不等式f(x)≤-1; 
(2)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙3人站到共有7級的臺階上,若每級臺階最多站3 人,同一級臺階上的人不區(qū)分站的位置,則不同的站法種數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案