設(shè)函數(shù)f(x)=在[1+,∞上為增函數(shù).  

    (1)求正實(shí)數(shù)a的取值范圍.

    (2)若a=1,求征:(n∈N*且n≥2)

(1)a≥1

   (2)證明見(jiàn)解析


解析:

(1)由已知: =

   依題意得:≥0對(duì)x∈[1,+∞恒成立

   ∴ax-1≥0對(duì)x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

   (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞上為增函數(shù),

   ∴n≥2時(shí):f()=  

    即: 

    ∴

設(shè)g(x)=lnx-x  x∈[1,+∞, 則對(duì)恒成立,

∴g′(x)在[1+∞為減函數(shù)

∴n≥2時(shí):g()=ln<g(1)=-1<0 

即:ln<=1+(n≥2)

    ∴

綜上所證:(n∈N*且≥2)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
1
x
,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與g(
1
x
)
的大小關(guān)系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
①若f(x)為減函數(shù),則-f(x)為增函數(shù);
②若f(0)<f(4),則函數(shù)f(x)不是R上的減函數(shù);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
④設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根.
⑤若函數(shù)f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確命題的序號(hào)有
①②④
①②④
(把所有正確命題的番號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為
1
2
,則a=
4或
1
4
4或
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,當(dāng)x≥1時(shí),f(x)=3x-1,且f(x+1)是偶函數(shù),則有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
1
x
,g(x)=f(x)+f'(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g(
1
x
)
的大小關(guān)系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案