【題目】已知直線軸,軸分別交于,,線段的中垂線與拋物線有兩個(gè)不同的交點(diǎn)、

1)求的取值范圍;

2)是否存在,使得,四點(diǎn)共圓,若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

【答案】12)存在,

【解析】

1)求出兩點(diǎn)坐標(biāo),得出其中垂線方程為,與拋物線方程聯(lián)立根據(jù)即可得結(jié)果;

2)設(shè),線段的中點(diǎn)為,將(1)和韋達(dá)定理可得,,結(jié)合四點(diǎn)共圓的特征得,代入兩點(diǎn)間距離公式可解得的值.

1)因?yàn)橹本軸,軸分別交于,.

所以,,

所以線段的中點(diǎn)為,,

所以線段的中垂線的方程為,即.

代入,

因?yàn)?/span>有兩個(gè)不同的交點(diǎn),.

所以,

,所以,即的取值范圍為.

2)若,,四點(diǎn)共圓,由對(duì)稱(chēng)性可知,圓心應(yīng)為線段的中點(diǎn),

設(shè),,線段的中點(diǎn)為,

,

所以,

,C四點(diǎn)共圓,則,即

所以.

所以,解得

滿足,所以存在,使得,,C四點(diǎn)共圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面平面,,,DE AC,AD=BD=1.

(Ⅰ)AB的長(zhǎng);

(Ⅱ)已知,求點(diǎn)E到平面BCD的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.

(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠預(yù)購(gòu)軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠60元,對(duì)于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過(guò)15次,不另外收費(fèi),若超過(guò)15次,超過(guò)部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.

(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫(xiě)出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對(duì)過(guò)去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在的平面和平面互相垂直,等腰梯形中,,,,分別為,的中點(diǎn),為底面的重心.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠銷(xiāo)售部以箱為單位銷(xiāo)售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷(xiāo)售;不低于100箱通過(guò)雙方議價(jià),買(mǎi)方能以?xún)?yōu)惠成交的概率為0.6,以?xún)?yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購(gòu)買(mǎi)150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購(gòu)買(mǎi)總價(jià)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠過(guò)去在生產(chǎn)過(guò)程中將污水直接排放到河流中對(duì)沿河環(huán)境造成了一定的污染,根據(jù)環(huán)保部門(mén)對(duì)該廠過(guò)去10年的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)出了其每年污水排放量(單位:噸)的頻率分布表:

污水排放量

頻率

0.1

0.3

0.4

0.2

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該廠污水排放量相互獨(dú)立.

1)若不加以治理,根據(jù)上表中的數(shù)據(jù),計(jì)算未來(lái)3年中至少有2年污水排放量不小于200噸的概率;

2)根據(jù)環(huán)保部門(mén)的評(píng)估,該廠當(dāng)年污水排放量時(shí),對(duì)沿河環(huán)境及經(jīng)濟(jì)造成的損失為5萬(wàn)元;當(dāng)年污水排放量時(shí),對(duì)沿河環(huán)境及經(jīng)濟(jì)造成的損失為10萬(wàn)元;當(dāng)年污水排放量時(shí),對(duì)沿河環(huán)境及經(jīng)濟(jì)造成的損失為20萬(wàn)元;當(dāng)年污水排放量時(shí),對(duì)沿河環(huán)境及經(jīng)濟(jì)造成的損失為50萬(wàn)元.為了保護(hù)環(huán)境,減少損失,該廠現(xiàn)有兩種應(yīng)對(duì)方案:

方案1:若該廠不采取治污措施,則需全部賠償對(duì)沿河環(huán)境及經(jīng)濟(jì)造成的損失;

方案2:若該廠采購(gòu)治污設(shè)備對(duì)所有產(chǎn)生的污水凈化達(dá)標(biāo)后再排放,則不需賠償,采購(gòu)設(shè)備的費(fèi)用為10萬(wàn)元,每年設(shè)備維護(hù)等費(fèi)用為15萬(wàn)元,該設(shè)備使用10年需重新更換.在接下來(lái)的10年里,試比較上述2種方案哪種能為該廠節(jié)約資金,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn2Sn+2nan+12,a28,其中nN*.

1)記bnan+1,求證:{bn}是等比數(shù)列;

2)設(shè)為數(shù)列{cn}的前n項(xiàng)和,若不等式kTn對(duì)任意的nN*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案