設平面向量,,函數(shù)。
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當,且時,求的值.
(Ⅰ)值域是;單調(diào)增區(qū)間為;(Ⅱ).
【解析】
試題分析:根據(jù)的特點,利用平面向量的數(shù)量積的運算法則化簡,然后利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),從而確定出的解析式,
根據(jù)、數(shù)量積公式和三角函數(shù)恒等變換,求出,在根據(jù)正弦函數(shù)的性質求出函數(shù)的值域;
②根據(jù)正弦函數(shù)的單調(diào)區(qū)間為,列出不等式,求出不等式的解集即可得到的取值范圍即為的遞增區(qū)間;
③根據(jù),代入的解析式中,得到的值,根據(jù)的范圍求出的范圍,利用同角三角函數(shù)間的基本關系求出的值,把所求的式子利用二倍角的正弦函數(shù)公式化簡,將和的值代入即可求出值.
試題解析:依題意 (2分)
(4分)
(Ⅰ) 函數(shù)的值域是; (5分)
令,解得 (7分)
所以函數(shù)的單調(diào)增區(qū)間為. (8分)
(Ⅱ)由得,
因為所以得, (10分)
(12分).
考點:1. 正弦函數(shù)的定義域和值域、正弦函數(shù)的單調(diào)性;2. 三角函數(shù)的恒等變換及化簡求值;3.平面向量數(shù)量積的運算.
科目:高中數(shù)學 來源:2013-2014學年廣東省中山市高三第一學期期末考試文科數(shù)學試卷(解析版) 題型:解答題
設平面向量,,函數(shù).
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當,且時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年廣東省中山市華僑中學高考數(shù)學模擬試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇期中題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市高一(下)第一次月考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com