設(shè)奇函數(shù)f(x)[1,1]上是增函數(shù),且f(1)=-1,若函數(shù)f(x)≤t22at1對所有的x[1,1]都成立,則當(dāng)a[1,1]t的取值范圍是(  )

A.-2≤t≤2 B.-t

Ct2t0t≥2 Dtt0t

 

C

【解析】依題意f(x)的最大值為f(1)1,要使f(x)≤t22at1對所有的x[1,1]都成立,則1≤t22at1,即t22at≥0,亦即t(t2a)≥0,當(dāng)t0時,不等式成立,當(dāng)0≤a≤1時,不等式的解為t2a≥2;當(dāng)-1≤a≤0時,不等式的解為t2a2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-3練習(xí)卷(解析版) 題型:選擇題

設(shè)a,bc,則下列關(guān)系式成立的是(  )

A. << B. < <

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-11練習(xí)卷(解析版) 題型:選擇題

若實數(shù)ab滿足a2b2≤1,則關(guān)于x的方程x22xab0有實數(shù)根的概率是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-10練習(xí)卷(解析版) 題型:選擇題

若回歸直線方程的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線的方程是(  )

A. 1.23x4 B. 1.23x5

C. 1.23x0.08 D. 0.08x1.23

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-10練習(xí)卷(解析版) 題型:選擇題

復(fù)數(shù)z的共軛復(fù)數(shù)(  )

A12i B12i C2i D2i

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān) Word版訓(xùn)練3-x3練習(xí)卷(解析版) 題型:選擇題

設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=-15,a3a5=-18,則當(dāng)Sn取最小值時n等于(  )

A9 B8 C7 D6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評7練習(xí)卷(解析版) 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時間x()

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量()

2

3

45

5

45

每輛利潤

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.

(3)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評7練習(xí)卷(解析版) 題型:選擇題

為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是(  )

A.簡單隨機抽樣 B.按性別分層抽樣 C.按學(xué)段分層抽樣 D.系統(tǒng)抽樣

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評4練習(xí)卷(解析版) 題型:填空題

已知ABC的一個內(nèi)角為120°,并且三邊長構(gòu)成公差為4的等差數(shù)列,則ABC的面積為________

 

查看答案和解析>>

同步練習(xí)冊答案