5.若函數(shù)f(x)=$\frac{kx+7}{{k{x^2}+4kx+3}}$的定義域?yàn)镽,則實(shí)數(shù)k的取值范圍是(  )
A.$({0,\frac{3}{4}})$B.$({-∞,0})∪({\frac{3}{4},+∞})$C.$[{0,\frac{3}{4}})$D.$({\frac{3}{4},+∞})$

分析 由題意可得kx2+4kx+3≠0恒成立,對(duì)k討論,k=0,k>0,k<0,結(jié)合二次函數(shù)的圖象和性質(zhì),由二次不等式的解法即可得到所求范圍.

解答 解:由題意可得kx2+4kx+3>0恒成立,
或kx2+4kx+3<0恒成立,
當(dāng)k=0時(shí),即有3≠0恒成立;
當(dāng)k>0時(shí),△<0即為16k2-12k<0,
解得0<k<$\frac{3}{4}$;
當(dāng)k<0時(shí),△<0,不等式無解,
綜上可得,k的取值范圍是[0,$\frac{3}{4}$).
故選:C.

點(diǎn)評(píng) 本題考查不等式成立問題的解法,注意運(yùn)用二次不等式的解法和二次函數(shù)的性質(zhì),以及分類討論的思想方法,屬于中檔題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=(a-1)x3+ax2為奇函數(shù),則f(1)=(  )
A.1B.-1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知點(diǎn)D為△ABC的邊BC上一點(diǎn),$\overrightarrow{BC}=3\overrightarrow{DC}$,${E_n}(n∈{N^*})$為邊AC上的一列點(diǎn),滿足$\overrightarrow{{E_n}A}=\frac{1}{4}{a_{n+1}}\overrightarrow{{E_n}B}-(3{a_n}+2)•\overrightarrow{{E_n}D}$,其中實(shí)數(shù)列{an}中,an>0,a1=1,則a5=( 。
A.46B.30C.242D.161

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題:“?x<-1,x2≥1”的否定是?x<-1,x2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a∈R,命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線x+(1+m)y+m-2=0與直線mx+2y+6=0平行,則實(shí)數(shù)m的值是( 。
A.-2B.1C.-2或1D.m的值不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.平面α∥平面β,直線a?α,b?β,那么直線a與直線b的位置關(guān)系一定是( 。
A.平行B.異面C.垂直D.不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若滿足∠A=30°,BC=10的△ABC恰好有不同的兩個(gè),則邊AB長(zhǎng)的取值范圍為( 。
A.(5,10)B.(10,20)C.[20,+∞)D.(5,10)∪[20,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知θ是第四象限角,且$sinθ+cosθ=\frac{1}{5}$,求值:
(1)sinθ-cosθ;
(2)tanθ.

查看答案和解析>>

同步練習(xí)冊(cè)答案