已知P是△ABC內(nèi)部一點(diǎn),
+
+
=
,記△PBC、△PAC、△PAB的面積分別為S
1、S
2、S
3,則S
1:S
2:S
3=
.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:延長(zhǎng)PB到B',使PB'=2PB,延長(zhǎng)PC到C',使PC=3PC',則
+
+
=
,再利用比例關(guān)系確定S
1:S
2:S
3.
解答:
解:如圖:延長(zhǎng)PB到B',使PB'=2PB,延長(zhǎng)PC到C',使PC=3PC',則
+
+
=
,
∴P是△AB'C'的重心,
∴S
△PAB'=S
△PAC'=S
△PB'C'=k
∴S
1=
PB•PCsin∠BPC
=
•
PB'•
PC'sin∠BPC
=
S
△PB'C'=
k
S
3=
S
△PAB'=
k,
S
2=
S△PAC'=
k
故S
1:S
2:S
3=1:2:3.
故答案為:1:2:3.
點(diǎn)評(píng):本題考查了向量的三角形法則、共線定理、相似三角形的性質(zhì),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知矩陣M有特征值λ
1=8及對(duì)應(yīng)特征向量a
1=
[],且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(-2,4)
(Ⅰ)求矩陣M;
(Ⅱ)若直線l在矩陣M所對(duì)應(yīng)的線性變換作用下得到直線l′:x-2y=4,求直線l方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若
=
,則A=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
用1,2,3,4,5,6組成數(shù)字不重復(fù)的六位數(shù),滿足1不在左右兩端,2,4,6三個(gè)偶數(shù)中有且只有兩個(gè)偶數(shù)相鄰,則這樣的六位數(shù)的個(gè)數(shù)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知正四面體ABCD的棱長(zhǎng)為4,設(shè)正四面體內(nèi)切球半徑為r,外接球半徑為R,MN是內(nèi)切球的一條直徑,P在正四面體表面上運(yùn)動(dòng).下列命題正確的是
(寫(xiě)出所有正確命題的編號(hào)).
①AB⊥CD
②從正四面體的六條棱中任選兩條,則它們互相垂直的概率為
③R=3r
④r=
⑤
•
的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
將自然1,2,3,4…排成數(shù)陣(如圖),在2處轉(zhuǎn)第一個(gè)彎,在3轉(zhuǎn)第二個(gè)彎,在5轉(zhuǎn)第三個(gè)彎,….,則第20個(gè)轉(zhuǎn)彎處的數(shù)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
函數(shù)y=sec
2x+2tanx+1(-
≤x≤
)的值域?yàn)?div id="1rr7bh3" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
如果執(zhí)行如圖所示的框圖,輸入N=5,則輸出的數(shù)S=
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)正實(shí)數(shù)x,y滿足xy=
,則實(shí)數(shù)y的取值范圍是
.
查看答案和解析>>