過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1)B(x2,y2)兩點(diǎn),若|AB|=12,那么x1+x2等于( 。
分析:由題意,拋物線的焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程為x=-1.根據(jù)拋物線的定義,證出|AF|+|BF|=x1+x2+2,結(jié)合題中數(shù)據(jù)即可求出x1+x2的值.
解答:解:根據(jù)題意,得
拋物線y2=4x的焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程為x=-1
∴由拋物線的定義,得|AF|=x1+1且|BF|=x2+1
因此|AF|+|BF|=x1+x2+2=12,可得x1+x2=10
故選:B
點(diǎn)評(píng):本題給出拋物線的焦點(diǎn)弦的長(zhǎng)度,求端點(diǎn)橫坐標(biāo)的和.著重考查了拋物線的定義與標(biāo)準(zhǔn)方程的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點(diǎn).
(1)求當(dāng)|AB|+|CD|取最小值時(shí)直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),A、B兩點(diǎn)在準(zhǔn)線l上的射影分別為M.N,則∠MFN=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案