已知函數(shù). (14分)

(1)對(duì)于任意實(shí)數(shù),恒成立,求的最大值;

(2)若方程有且僅有一個(gè)實(shí)根,求的取值范圍.

 

 解:(1)f′(x)=3x2-9x+6=3(x-1)(x-2),

因?yàn)閤∈(-∞,+∞),f′(x)≥m,         即3x2-9x+(6-m)≥0恒成立,

所以Δ=81-12(6-m)≤0,得,     即m的最大值為.

(2)因?yàn)楫?dāng)x<1時(shí),f′(x)>0;當(dāng)1<x<2時(shí),f′(x)<0;當(dāng)x>2時(shí),f′(x)>0.

所以當(dāng)x=1時(shí),取極大值,當(dāng)x=2時(shí),取極小值f(2)=2-a,

故當(dāng)f(2)>0或f(1)<0時(shí),方程=0僅有一個(gè)實(shí)根.

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1+sinx3+cosx
,則該函數(shù)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1-x
2x2-3x-2
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)(x-1)f(
x+1x-1
)+f(x)=x
,其中x≠1,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•崇明縣一模)已知函數(shù)y=-
1-x2
(-1≤x≤0)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•黃浦區(qū)一模)已知函數(shù)y=
1+bx
ax+1
(a>0,x≠-
1
a
)
的圖象關(guān)于直線y=x對(duì)稱(chēng).
(1)求實(shí)數(shù)b的值;
(2)設(shè)A、B是函數(shù)圖象上兩個(gè)不同的定點(diǎn),記向量
e1
=
AB
,
e2
=(1,0)
,試證明對(duì)于函數(shù)圖象所在的平面里任一向量
c
,都存在唯一的實(shí)數(shù)λ1、λ2,使得
c
=λ1
e1
+λ2
e2
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案