精英家教網 > 高中數學 > 題目詳情

【題目】已知函數有極值,且導函數的極值點是的零點,給出命題:;,則存在,使得所有極值之和一定小于0;,且是曲線的一條切線,則的取值范圍是.則以上命題正確序號是_____________.

【答案】①②③④

【解析】

列出關系式求解的關系,化簡函數的解析式,利用函數的零點判斷①的正誤;通過的范圍,結合函數的圖象判斷②的正誤;求出極值之和判斷③正誤;利用函數的導數結合函數的切線方程,轉化推出參量的范圍判斷④的正誤即可.

解:①正確;

函數的導函數為:;且導函數的極值點是的零點

,當時,,單調遞減;當時,單調遞增,故的極小值點;

;

函數有極值;

中,

解得:;

②正確;

時,有兩個不等的實根,設為,

由①知,的極小值點;

,

時,,單調遞增,

時,,單調遞減,

時,,單調遞增,

時,,

時, ,

存在,使得

③正確;

由①知極值為

有兩個不等的實根,設為;

,

的兩個極值,

所有極值之和為:

④正確;

,

時,

解得,

如圖:且的一條切線,

設切點坐標,則,

因為

,

,

,

,

故答案為:①②③④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5.該公司近60天每天攬件數量的頻率分布直方圖如下圖所示(同一組數據用該區(qū)間的中點值作代表).

1)求這60天每天包裹數量的平均值和中位數;

2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?

3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線與圓相交于兩點,的面積達到最大時,________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

1)當時,求不等式的解集;

2)若時,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于圓周率,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請名同學,每人隨機寫下一個都小于的正實數對,再統(tǒng)計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統(tǒng)計數m來估計的值.假如統(tǒng)計結果是那么可以估計______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,平面ABCD,是正三角形,ACBD的交點為M,又,,點NCD中點.

1)求證:平面PAD;

2)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當月在售二手房均價(單位:萬元/平方米)的散點圖.(圖中月份代碼1—13分別對應2017年1月—2018年1月)

由散點圖選擇兩個模型進行擬合,經過數據處理得到兩個回歸方程分別為,并得到以下一些統(tǒng)計量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請利用相關指數判斷哪個模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時該小區(qū)所有住房的房產證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應支付的購房金額.(購房金額=房款+稅費;房屋均價精確到0.001萬元/平方米)

附注:根據有關規(guī)定,二手房交易需要繳納若干項稅費,稅費是按房屋的計稅價格進行征收.(計稅價格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(含90平方米)為1%;首套面積90平方米以上且144平方米以內(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個人所得稅

(賣方繳納)

首套面積144平方米以內(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產證滿5年且是家庭唯一住房的免征

參考數據:,,,. 參考公式:相關指數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的極值點的個數;

2)當時,若存在實數,使得,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,.

)求橢圓E的方程;

)設是以原點為圓心,短軸長為半徑的圓,過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M,N,若直線MNx軸、y軸上的截距分別為m,n,試計算的值是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案