【題目】在四棱錐中,,.

(Ⅰ)若點(diǎn)的中點(diǎn),求證:∥平面

(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.

【答案】(1)見解析; (2).

【解析】

(I)結(jié)合平面與平面平行判定,得到平面BEM平行平面PAD,結(jié)合平面與平面性質(zhì),證明結(jié)論.(II)建立空間坐標(biāo)系,分別計(jì)算平面PCD和平面PDB的法向量,結(jié)合向量數(shù)量積公式,計(jì)算余弦值,即可.

(Ⅰ)取的中點(diǎn)為,連結(jié),.

由已知得,為等邊三角形,.

,

,

,∴.

又∵平面,平面,

∥平面.

的中點(diǎn),的中點(diǎn),∴.

又∵平面,平面,

∥平面.

,∴平面∥平面.

平面,∴∥平面.

(Ⅱ)連結(jié),交于點(diǎn),連結(jié),由對(duì)稱性知,的中點(diǎn),且,.

∵平面平面,

平面,.

為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系.

(0,,0),(3,0,0),(0,0,1).

易知平面的一個(gè)法向量為.

設(shè)平面的法向量為

,,∴,

,∴.

,得,∴

.

設(shè)二面角的大小為,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享單車”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶對(duì)其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了10名用戶,得到用戶的滿意度評(píng)分分別為92,8486,7889,74,83,77,89.

(1)計(jì)算樣本的平均數(shù)和方差;

2)在(1)條件下,若用戶的滿意度評(píng)分在()之間,則滿意度等級(jí)為“A級(jí)”.試估計(jì)該地區(qū)滿意度等級(jí)為“A級(jí)”的用戶所占的百分比.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是直角梯形,,平面.

)設(shè)為線段的中點(diǎn),求證://平面

)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù),上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若函數(shù)處的切線平行于軸,是否存在整數(shù),使不等式時(shí)恒成立?若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為5/千克時(shí),每日可售出該商品11千克.

(1) 的值;

(2) 若商品的成品為3/千克, 試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)已知在ABC中,AB,C的對(duì)邊分別為ab,c,,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過(guò)的有40人,不超過(guò)的有15人;在45名女性駕駛員中,平均車速超過(guò)的有20人,不超過(guò)的有25人.

(1)完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為平均車速超過(guò)的人與性別有關(guān).

平均車速超過(guò)人數(shù)

平均車速不超過(guò)人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過(guò)的車輛數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,,,,EPB的中點(diǎn).

1)證明:平面平面PBC;

2)求直線PD與平面AEC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案