設(shè)
a
=(
1
3
,2sinα),
b
=(
1
2
cosα,
3
4
),且
a
b
,則銳角α的值為(  )
A、
π
12
12
B、
π
12
C、
12
D、
π
6
π
3
考點(diǎn):二倍角的正弦,平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由兩個(gè)向量共線的性質(zhì)及已知條件可得sin2α=1,再由α為銳角可得 α的值.
解答: 解:∵
a
=(
1
3
,2sinα),
b
=(
1
2
cosα,
3
4
),且
a
b
,
1
2
sinα×cosα=
1
3
×
3
4
,即 sin2α=
1
2

再由α為銳角,可得 α=
π
12
12

故選:A.
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosxcos(x-
π
3

(1)求f(x)的最小正周期和f(x)的遞增區(qū)間;
(2)指出f(x)的圖象是由y=sinx的圖象經(jīng)怎樣變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)X是一個(gè)離散型隨機(jī)變量,其分布列如表格所示,則E(X)=
 

X204
P0.51-3qq

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(x)=
ax+b
1+x2
,f(1)=
1
2
,
(1)確定f(x)的解析式;  
(2)用定義法證明f(x)在[-1,1]上是增函數(shù);
(3)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-log2x|<2x+|log2x|的解集為( 。
A、(1,2)
B、(0,1)
C、(1,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=a-x2+2x+3(0<a<1)的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ax+by+c=0(b≠0)的傾斜角為α,則直線ax-by+c=0(b≠0)的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)任意的實(shí)數(shù)m,n,都有f(m)+f(n)=f(m+n),且f(1007)=2,則f(1)+f(3)+f(5)+…+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-
π
2
<α<0,則點(diǎn)Q(cosα,sinα)所在的象限是( 。
A、一B、二C、三D、四

查看答案和解析>>

同步練習(xí)冊(cè)答案