5.我國古代數(shù)學名著《數(shù)學九章》中有云:“今有木長二丈四尺,圍之五尺.葛生其下,纏木兩周,上與木齊,問葛長幾何?”其意思為“圓木長2丈4尺,圓周為5尺,葛藤從圓木的底部開始向上生長,繞圓木兩周,剛好頂部與圓木平齊,問葛藤最少長多少尺(注:1丈等于10尺)( 。
A.29尺B.24尺C.26尺D.30尺

分析 由題意,圓柱的側面展開圖是矩形,一條直角邊(即木棍的高)長24尺,另一條直角邊長5×2=10(尺),利用勾股定理,可得結論.

解答 解:由題意,圓柱的側面展開圖是矩形,一條直角邊(即木棍的高)長24尺,另一條直角邊長5×2=10(尺),因此葛藤長$\sqrt{2{4}^{2}+1{0}^{2}}$=26(尺).
故選:C.

點評 本題考查旋轉體表面上的最短距離問題,考查學生的計算能力,正確運用圓柱的側面展開圖是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知平行六面體ABCD-A′B′C′D′中,底面是邊長為1的菱形,且DD′=2,∠BAD=∠BAA′=∠DAA′=60°,則AC′等于(  )
A.$\frac{17}{2}$B.$\sqrt{11}$C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)$f(x)=lnx-\frac{1}{x}$的零點為x0,則下列結論正確的是( 。
A.$ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$B.${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$
C.${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$D.${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,AB是圓O的直徑,弦BD、CA的延長線相交于點M,MN垂直BA的延長線于點N.
(1)求證:DA是∠CDN的角平分線;
(2)求證:BM2=AB2+AM2+2AB•AN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設A(x1,y1),B(x2,y2)是函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$圖象上任意兩點,M為線段AB的中點.已知點M的橫坐標為$\frac{1}{2}$.若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2.
(Ⅰ)求Sn;
(Ⅱ)已知an=$\left\{\begin{array}{l}{\frac{2}{3},n=1}\\{\frac{1}{({S}_{n}+1)({S}_{n+1}+1)},n≥2}\\{\;}\end{array}\right.$,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<λ(Sn+1+1)對一切n∈N*都成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F(1,0),離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)作直線與橢圓C相交于兩點G,H,設P為橢圓C上動點,且滿足$\overrightarrow{OG}$+$\overrightarrow{OH}$=t$\overrightarrow{OP}$(O為坐標原點).當t≥1時,求△OGH面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.當x∈(-∞,1],不等式$\frac{{1+{2^x}+{4^x}•a}}{{{a^2}-a+1}}$>0恒成立,則實數(shù)a的取值范圍為a>$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且α+β<0,若sinα=$\frac{1}{3}$,sinβ=1-a,則實數(shù)a的取值范圍是( 。
A.[0,1)B.(1,2]C.($\frac{4}{3}$,2]D.($\frac{1}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.從高一年級1500名學生中的某次數(shù)學考試成績(單位:分)中抽取部分學生的成績,得到頻率分布直方圖如圖:
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若以成績不低于80分為“優(yōu)秀”,估計全年級成績?yōu)椤皟?yōu)秀”的學生人數(shù);
(Ⅲ)估計這次考試全年級的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

同步練習冊答案