已知數(shù)列﹛an﹜的前n項和Sn=
(n+1)an
2
,且=1,設Cn=
an
an+1
+
an+1
an
,數(shù)列﹛Cn﹜的前n項和為Tn
(1)求數(shù)列﹛an﹜的通項公式;
(2)求證:對任意正整數(shù)n,不等式2n<Tn<2n+1恒成立.
考點:數(shù)列與不等式的綜合,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由題意利用公式法即可求得
an
an-1
=
n
n-1
,再由累乘法得出數(shù)列的通項公式;
(2)由(1)得Cn=
an
an+1
+
an+1
an
=
n
n+1
+
n+1
n
=2+
1
n
-
1
n+1
,利用裂項法求得Tn=2n+1-
1
n+1
,即可得出證明.
解答: 解:(1)∵Sn=
(n+1)an
2
,
∴2sn=(n+1)an,①
n≥2時,2sn-1=nan-1,②
∴由①-②得,2an=(n+1)an-nan-1,
an
an-1
=
n
n-1

∴an=a1
a2
a1
an
an-1
=1×
2
1
×
3
2
×…×
n
n-1
=n,
∴an=n.
(2)由(1)得Cn=
an
an+1
+
an+1
an
=
n
n+1
+
n+1
n
=2+
1
n
-
1
n+1
,
∴Tn=c1+c2+…+cn=2n+1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=2n+1-
1
n+1
,
∵0<1-
1
n+1
=
n
n+1
<1,
∴2n<Tn<2n+1.
點評:本題主要考查數(shù)列通項公式的求法及裂項相消法求數(shù)列的和等知識,考查學生的運算求解能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,4},B={3,4,5,6},求:
(1)A∪B,A∩B;
(2)已知全集I={1,2,3,4,5,6,7},求∁IA,∁IB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖給出的是計算
1
3
+
1
5
+
1
7
+…+
1
21
的值的一個程序框圖,其中判斷框內(nèi)應填入的條件是(  )
A、i>10?
B、i<10?
C、i>20?
D、i<20?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=abx+y(a>0,b>0)的最大值為8,則(a2+b2)-10(a+b)的最小值為( 。
A、-32B、-33
C、-34D、-35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l與橢圓
x2
36
+
y2
9
=1交于A和B兩點,且直線l經(jīng)過點P(4,2),當直線斜率為
1
2
時,求AB長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用定義法證明:
k
n+k
<ln(1+
k
n
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點,PQ是經(jīng)過點F1且垂直于x軸的雙曲線的弦.
(1)若∠PF2Q=90°,求該雙曲線的離心率;
(2)若△PF2Q是銳角三角形,求該雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從區(qū)間[-1,4]上隨機取一個數(shù)x,則x∈[0,2]的概率是(  )
A、
1
2
B、
2
5
C、
3
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,AB⊥BC,AD⊥DC.若
AB
=
a
,
AD
=
.
b
,則
AC
BD
=( 。
A、
a
2-
b
2
B、
b
2-
a
2
C、
a
2+
b
2
D、
a
b

查看答案和解析>>

同步練習冊答案