△OAB中,|
AB
|=10

(1)點(diǎn)C為直線AB上一點(diǎn),且
AC
=t
AB
,(t∈R)
,試用
OA
、
OB
表示
OC

(2)點(diǎn)C1、C2,…,C9依次為線段AB的10等分點(diǎn),且
OC1
+
OC2
+…+
OC9
=λ(
OA
+
OB
)
,求實(shí)數(shù)λ的值.
(3)條件同(2),又點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),定義關(guān)于點(diǎn)P的函數(shù)f(P)=|
OP
-
OC1
|+2|
OP
-
OC2
|+3|
OP
-
OC3
|+…+9|
OP
-
OC9
|+10|
OP
-
OB
|
,求f(P)的最小值.
分析:(1)根據(jù)向量減法的三角形法則,可得
AB
=
OB
-
OA
,再由
AC
=t
AB
OC
=
OA
+
AC
可得答案;
(2)根據(jù)向量定比分點(diǎn)公式,當(dāng)C將AB分為長度比為a:b的兩段時(shí),
OC
=
b
a+b
OA
+
a
a+b
OB
,逐一求出各分點(diǎn)對(duì)應(yīng)的向量累加可得答案.
(3)設(shè)
AP
=x
AC1
,則f(P)=|
OP
-
OC1
|+2|
OP
-
OC2
|+3|
OP
-
OC3
|+…+9|
OP
-
OC9
|+10|
OP
-
OB
|
=|x-1|+2|x-2|+3|x-3|+…+9|x-9|+10|x-10|利用零點(diǎn)分段法化簡函數(shù)的解析式,并結(jié)合一次函數(shù)的圖象和性質(zhì)分析函數(shù)的單調(diào)性,可得函數(shù)的最小值.
解答:解:(1)在△OAB中
AB
=
OB
-
OA

AC
=t
AB
=t
OB
-t
OA

OC
=
OA
+
AC
=t
OB
+(1-t)
OA

(2)∵C1、C2,…,C9依次為線段AB的10等分點(diǎn),
OC1
=
9
10
OA
+
1
10
OB

OC2
=
8
10
OA
+
2
10
OB
;

OCn
=
10-n
10
OA
+
n
10
OB
;

OC9
=
1
10
OA
+
9
10
OB

OC1
+
OC2
+…+
OC9
=(
1
10
+
2
10
+…+
9
10
(
OA
+
OB
)
=
9
2
(
OA
+
OB
)

故λ=
9
2

(3)設(shè)
AP
=x
AC1
,則
f(P)=|
OP
-
OC1
|+2|
OP
-
OC2
|+3|
OP
-
OC3
|+…+9|
OP
-
OC9
|+10|
OP
-
OB
|

=|
C1P
|+2|
C2P
|+3|
C3P
|+…+9|
C3P
|+10|
BP
|

=|x-1|+2|x-2|+3|x-3|+…+9|x-9|+10|x-10|
當(dāng)x∈[k,k+1]時(shí),k∈{0,1,2,3,4,5,6,7,8,9}
f(x)=(x-1)+2(x-2)+…+k(x-k)+k(k+1-x)…+10(10-x)
=x+2x+…+kx-(k+1)x-(k+2)x-…-10x-12-22-…-k2+(k+1)2+(k+2)2+…+102
=(k2+k-55)x-[12+22+…+k2-(k+1)2-(k+2)2-…-102]
當(dāng)k∈{0,1,2,3,4,5,6}時(shí),k2+k-55<0,函數(shù)為減函數(shù)
當(dāng)k∈{7,8,9}時(shí),k2+k-55>0,函數(shù)為增函數(shù)
故當(dāng)k=7時(shí),f(P)取最小值f(7)=1×6+2×5+3×4+4×3+5×2+6×1+7×0+8×1+9×2+10×3=112
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面向量加法和減法的三角形法則,向量定比分點(diǎn)公式,含絕對(duì)值符號(hào)的函數(shù),是平面向量的綜合應(yīng)用,難度較大,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
(1)求向量
.
AB
的坐標(biāo);
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
(1)求向量數(shù)學(xué)公式的坐標(biāo);
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△OAB中,|
AB
|=10

(1)點(diǎn)C為直線AB上一點(diǎn),且
AC
=t
AB
,(t∈R)
,試用
OA
OB
表示
OC

(2)點(diǎn)C1、C2,…,C9依次為線段AB的10等分點(diǎn),且
OC1
+
OC2
+…+
OC9
=λ(
OA
+
OB
)
,求實(shí)數(shù)λ的值.
(3)條件同(2),又點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),定義關(guān)于點(diǎn)P的函數(shù)f(P)=|
OP
-
OC1
|+2|
OP
-
OC2
|+3|
OP
-
OC3
|+…+9|
OP
-
OC9
|+10|
OP
-
OB
|
,求f(P)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年《新高考全案》高考總復(fù)習(xí)單元檢測卷09:直線與圓的方程(解析版) 題型:解答題

以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
(1)求向量的坐標(biāo);
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案