19.學(xué)校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數(shù)X的分布列.(用數(shù)字作答)

分析 (1)①求出基本事件總數(shù),計算摸出3個白球事件數(shù),利用古典概型公式,代入數(shù)據(jù)得到結(jié)果;
②獲獎包含摸出2個白球和摸出3個白球,且它們互斥,根據(jù)①求出摸出2個白球的概率,再相加即可求得結(jié)果;
(2)確定在3次游戲中獲獎次數(shù)X的取值是0、1、2、3,求出相應(yīng)的概率,即可寫出分布列.

解答 解:(1)①設(shè)“在1次游戲中摸到i個白球”為事件Ai(i=0,1,2,3),
則P(A3)=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{2}{•C}_{3}^{2}}$=$\frac{1}{5}$;
②設(shè)“在一次游戲中獲獎”為事件B,則B=A2∪A3,
又P(A2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{2}^{2}}{{C}_{3}^{2}}$+$\frac{{C}_{3}^{1}{•C}_{2}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{2}^{1}}{{C}_{3}^{2}}$=$\frac{1}{2}$,且A2、A3互斥,
所以P(B)=P(A2)+P(A3)=$\frac{1}{2}$+$\frac{1}{5}$=$\frac{7}{10}$
(2)由題意可知X的所有可能取值為0,1,2,3;
P(X=0)=${C}_{3}^{0}$•(1-$\frac{7}{10}$)3=$\frac{27}{1000}$,
P(X=1)=C31•$\frac{7}{10}$•${(1-\frac{7}{10})}^{2}$=$\frac{189}{1000}$,
P(X=2)=${C}_{3}^{2}$•${(\frac{7}{10})}^{2}$•(1-$\frac{7}{10}$)=$\frac{441}{1000}$,
P(X=3)=${C}_{3}^{3}$•${(\frac{7}{10})}^{3}$=$\frac{343}{1000}$;
所以X的分布列為

X0123
P$\frac{27}{1000}$$\frac{189}{1000}$$\frac{441}{1000}$$\frac{343}{1000}$

點評 本題考查了古典概型及其概率計算公式和離散型隨機變量的分布列的應(yīng)用問題,也考查了互斥事件和相互獨立事件等基礎(chǔ)知識,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線y1=2-$\frac{1}{x}$與y2=x3-x2+x在x=x0處的切線的斜率的乘積為3,則x0=(  )
A.-2B.2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)斜率為4的直線l過拋物線y2=ax(a≠0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4,則拋物線方程為( 。
A.y2=±4xB.y2=4xC.y2=±4$\sqrt{2}$xD.y2=4$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是公差為1的等差數(shù)列,a1,a5,a25成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=3${\;}^{{a}_{n}}$+an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x-y),當(dāng)x>0時,f(x)<0,且f(2)=-3.
(Ⅰ)求f(0),并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)證明:函數(shù)f(x)在R上的單調(diào)遞減;
(Ⅲ)若不等式f(2x-3)-f(-22x)<f(k•2x)+6在區(qū)間(-2,2)內(nèi)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點,點F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點,求三棱錐A1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知遞增的等差數(shù)列{an},首項a1=2,Sn為其前n項和,且2S1,2S2,3S3成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,某炮兵陣地位于A點,兩觀察所分別位于C、D兩點,已知△ACD為正三角形,且DC=$\sqrt{3}$km,當(dāng)目標(biāo)出現(xiàn)在B時,測得∠CDB=45°,∠BCD=75°,求炮兵陣地與目標(biāo)的距離是多少?(精確到0.01km)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知M⊆{1,2,3,4,5},若M中所有元素之和稱為M的“容量”(規(guī)定空集容量為0),若M的容量為奇(偶)數(shù),則稱M為奇(偶)子集.求證:
(1)M的奇子集與偶子集個數(shù)相等:
(2)奇子集與偶子集容量相等.

查看答案和解析>>

同步練習(xí)冊答案