y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的最高點為P(
π
12
,3),由這個最高點到相鄰最低點間的曲線與x軸交于Q(
π
3
,0),則函數(shù)表達式為
 
考點:復合三角函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由特殊點的坐標求出φ的值,可得函數(shù)的解析式.
解答: 解:∵函數(shù)的最高點為P(
π
12
,3),
∴A=3,
由這個最高點到相鄰最低點間的曲線與x軸交于Q(
π
3
,0),
T
4
=
π
3
-
π
12
=
π
4
,即函數(shù)的周期T=π=
ω
,解得ω=2,
則y=Asin(ωx+φ)=3sin(2x+φ),
∵3sin(2×
π
12
+φ)=3sin(
π
6
+φ)=3,
∴sin(
π
6
+φ)=1,
π
6
+φ=
π
2

解得φ=
π
3

故函數(shù)表達式為y=3sin(2x+
π
3
),
故答案為:y=3sin(2x+
π
3
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由特殊點的坐標求出φ的值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1.025精確到0.01的近似值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD,E、F分別是CD、AD的中點,BE、CF交于點P.求證BE⊥CF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+ax+b2-b+1(a∈R,b∈R),對任意實數(shù)x都有f(1-x)=f(1+x)成立,若當x∈[-1,1]時,f(x)>0恒成立,則b的取值范圍是(  )
A、b<-1或 b>2
B、b>2
C、-1<b<0
D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(8,k)(k∈R),
b
=(1,3),
c
=(3,-2),且(3
a
+
b
)⊥
c
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 km-2km2-1≤0,當0<m<
1
2
時,不等式恒成立.求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點M(3,0)的直線交⊙C:(x-2)2+y2=4于A、B兩點,C為圓心,則
AB
AC
的最小值是( 。
A、8
B、6
C、
32
5
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程 2-x2=|x-a|至少有一個負數(shù)解,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司有男職員45名,女職員15名,按照分層抽樣的方法組建了一個4人的科研攻關小組.
(1)求某職員被抽到的概率及科研攻關小組中男、女職員的人數(shù);
(2)經(jīng)過一個月的學習、討論,這個科研攻關組決定選出兩名職員做某項實驗,方法是先從小組里選出1名職員做實驗,該職員做完后,再從小組內(nèi)剩下的職員中選一名做實驗,求選出的兩名職員中恰有一名女職員的概率;
(3)實驗結束后,第一次做實驗的職員得到的實驗數(shù)據(jù)為68,70,71,72,74,第二次做實驗的職員得到的實驗數(shù)據(jù)為69,70,70,72,74,請問哪位職員的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

同步練習冊答案