【題目】某公司租地建倉庫,每月土地占用費(fèi)y1與車庫到車站的距離x成反比,而每月的庫存貨物的運(yùn)費(fèi)y2與車庫到車站的距離x成正比.如果在距離車站10公里處建立倉庫,這兩項(xiàng)費(fèi)用y1和y2分別為2萬元和8萬元.求若要使得這兩項(xiàng)費(fèi)用之和最小時,倉庫應(yīng)建在距離車站多遠(yuǎn)處?此時最少費(fèi)用為多少萬元?
【答案】解:設(shè) ,y2=k2x,由題意可得: ,8=10k2 , 解得k1=20, .設(shè)這兩項(xiàng)費(fèi)用之和為f(x),則f(x)= + .
∵x>0,∴f(x) =8,
當(dāng)且僅當(dāng) ,解得x=5時取得等號.
答:若要使得這兩項(xiàng)費(fèi)用之和最小時,倉庫應(yīng)建在距離車站8公里處,此時最少費(fèi)用為8萬元.
【解析】設(shè) ,y2=k2x,由題意可得: ,8=10k2 , 解得k1 , k2 . 設(shè)這兩項(xiàng)費(fèi)用之和為f(x),則f(x)= .利用基本不等式即可得出.
【考點(diǎn)精析】關(guān)于本題考查的基本不等式在最值問題中的應(yīng)用,需要了解用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,則m的范圍是( )
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;
(2)若曲線, 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,證明f(x)的圖象與x軸有2個交點(diǎn);
(2)在(1)的條件下,是否存在m∈R,使得f(m)=﹣a成立時,f(m+3)為正數(shù),若存在,證明你的結(jié)論,若不存在,請說明理由;
(3)若對x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有兩個不等實(shí)根,證明必有一個根屬于(x1 , x2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn), .
(1)若直線平行于,與圓相交于, 兩點(diǎn), ,求直線的方程;
(2)在圓C上是否存在點(diǎn)P,使得 ?若存在,求點(diǎn)P的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方體ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端點(diǎn)的點(diǎn),且.
(1) 當(dāng)∠BEA1為鈍角時,求實(shí)數(shù)λ的取值范圍;
(2) 若λ=,記二面角B1-A1B-E的的大小為θ,求|cosθ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊弓形余布料EMF,點(diǎn)M為弧的中點(diǎn),其所在圓O的半徑為4 dm(圓心O在弓形EMF內(nèi)),∠EOF=.將弓形余布料裁剪成盡可能大的矩形ABCD(不計(jì)損耗), AD∥EF,且點(diǎn)A、D在弧上,設(shè)∠AOD=.
(1)求矩形ABCD的面積S關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)矩形ABCD的面積最大時,求cos的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求的極值;
(2)如果≥在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有24名男生和26名女生,數(shù)據(jù)a1 , a2 , …,a50是該班50名學(xué)生在一次數(shù)學(xué)學(xué)業(yè)水平模擬考試的成績,下面的程序用來同時統(tǒng)計(jì)全班成績的平均數(shù):A,男生平均分:M,女生平均分:W;為了便于區(qū)別性別,輸入時,男生的成績用正數(shù),女生的成績用其成績的相反數(shù),那么在圖里空白的判斷框和處理框中,應(yīng)分別填入下列四個選項(xiàng)中的( )
A.T>0?,
B.T<0?, ??
C.T<0?,
D.T>0?,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com