函數(shù)f(x)=
2x(x≥0)
x2(x<0)
,若f(x0)=1,則x0等于( 。
A、-1或0B、0C、0或1D、1
分析:因函數(shù)是分段函數(shù),故需要對(duì)自變量分x0≥0和x0<0兩種情況,代入對(duì)應(yīng)解析式求解,注意驗(yàn)證范圍.
解答:解:由題意知,分兩種情況:
當(dāng)x0≥0時(shí),f(x0)=2x0=1,解得x0=0,
當(dāng)x0<0時(shí),f(x0)=x02=1,解得x0=-1,
故選A.
點(diǎn)評(píng):本題是分段函數(shù)求值問題,需要根據(jù)解析式對(duì)自變量分情況求解,一定要注意自變量的值所在的范圍,然后代入相應(yīng)的解析式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿足f(x)=4的x的值是( 。
A、2B、16
C、2或16D、-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足:a1=1,a n+1=f(
1
an
),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn
(3)設(shè)bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
對(duì)一切n∈N*成立,求最小的正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,對(duì)任意m∈[-3,3],不等式f(mx-1)+f(2x)<0恒成立,則實(shí)數(shù)x的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x+6, x∈[1,2]
x+7, x∈[-1,1]
,則f(x)的最大值、最小值為
10,6
10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+x-5,那么方程f(x)=0的解所在區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案