19.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,AD=2,AB=PA=1,且.PA⊥平面ABCD.
(1)求證:PB⊥AC;
(2)求頂點A到平面PCD的距離.

分析 (I)推導(dǎo)出PA⊥AC,AB⊥AC,由此能證明AC⊥平面PAB,從而PB⊥AC.
(Ⅱ)推導(dǎo)出AC⊥CD,PA⊥CD,從而CD⊥平面PAC,進而平面PCD⊥平面PAC,過A作AH⊥PC,垂足為H,則AH⊥平面PCD,由此能求出A到平面PCD的距離.

解答 (本題滿分12分)
證明:(I)∵PA⊥平面ABCD,AC?平面ABCD,∴PA⊥AC;…(2分)
在△ABC中,∠ABC=60°,BC=2,AB=1,
∴AC2=AB2+BC2-2 AB•BC cos60°=1+4-2=3,則AB2+AC2=BC2,
∴AB⊥AC,…(4分)
又PA∩AB=A,∴AC⊥平面PAB,
∵PB?平面PAB,∴PB⊥AC.…(6分)
解:(Ⅱ)由(I)知:AC⊥CD,又PA⊥CD,則CD⊥平面PAC,
∵CD?平面PCD,∴平面PCD⊥平面PAC;…(8分)
過A作AH⊥PC,垂足為H,則AH⊥平面PCD;…(10分)
在Rt△PAC中,AH=$\frac{PA•AC}{PC}$=$\frac{\sqrt{3}}{2}$.
即A到平面PCD的距離為$\frac{\sqrt{3}}{2}$.…(12分)

點評 本題考查線線垂直的證明,考查點到平面的距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力,空間想象能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)直線x=m分別交函數(shù)$y=sinx、y=sin(x+\frac{π}{2})$的圖象于M、N、兩點,則M、N距離的最大值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)是定義在R上以π為周期的奇函數(shù),且當(dāng)x∈[-$\frac{π}{2}$,0)時,f(x)=sinx,則f(-$\frac{5π}{3}$)=( 。
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若($\frac{1}{2}$+2x)n的展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大的項的系數(shù);
(2)(a+x)(a+x)4的展開式中x的奇數(shù)次冪項的系數(shù)之和為32,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在正方形ABCD中,AD=4,E為DC上一點,且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,F(xiàn)為BC的中點,則$\overrightarrow{AE}$•$\overrightarrow{AF}$=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸入m=3,n=4,則輸出a=( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x=1是函數(shù)$f(x)=({x-2}){e^x}-\frac{k}{2}{x^2}+kx({k>0})$的極小值點,則實數(shù)k的取值范圍是(0,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式|x-1|<2的解集是(  )
A.(-∞,-1)B.(-∞,1)C.(-1,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)$\frac{(2+2i)^{2}}{1-3i}$的虛部是$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案