【題目】已知橢圓左、右頂點(diǎn)分別為AB,上頂點(diǎn)為D(0,1),離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若點(diǎn)E是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AE、BE與直線分別交于M、N兩點(diǎn),當(dāng)線段MN的長(zhǎng)度最小時(shí),橢圓C上是否存在點(diǎn)T使的面積為?若存在,求出點(diǎn)T的坐標(biāo):若不存在,請(qǐng)說明理由.

【答案】12)見解析

【解析】

1)由橢圓的性質(zhì)列出方程組,即可得出橢圓方程;

2)根據(jù)題意表示出的坐標(biāo),進(jìn)而得出直線的方程以及弦長(zhǎng),由的面積得出點(diǎn)到直線的距離,將該距離轉(zhuǎn)化為兩平行直線的距離,即可得出的坐標(biāo).

1

橢圓C的標(biāo)準(zhǔn)方程為

2)顯然直線的斜率存在,設(shè)為,并且,則

設(shè),由,解得

,得到

,得出,則

,即,所以直線

,得出

當(dāng)且僅當(dāng)時(shí),取等號(hào),則

此時(shí)

直線

若橢圓C上存在點(diǎn)T使的面積為,則點(diǎn)到直線的距離為

即過點(diǎn)且與直線平行的直線到直線的距離為

設(shè)該直線為,則,解得

當(dāng)時(shí),由,解得

當(dāng)時(shí),由

由于,則不成立

綜上,存在,使的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,平面,,,.

1)在棱上是否存在一點(diǎn),使得平面?請(qǐng)證明你的結(jié)論;

2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線為參數(shù),),曲線為參數(shù)),相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)已知直線與圓交于,兩點(diǎn),記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線與兩坐標(biāo)軸的交點(diǎn)都在圓上,圓軸正半軸、軸正半軸分別交于,兩點(diǎn).

(Ⅰ)求圓的方程;

(Ⅱ)過點(diǎn)作直線與圓交于,兩點(diǎn),是否存在使得共線,如果存在求直線的方程,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊 ,那么下面說法正確的是( )

A. 平面平面

B. 四面體的體積是

C. 二面角的正切值是

D. 與平面所成角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,DE分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

同步練習(xí)冊(cè)答案