分析 以D為原點,DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角P-AC-D的平面角的正切值.
解答 解:以D為原點,DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,
A(1,0,0),C(0,2,0),P(0,0,1),
$\overrightarrow{AP}$=(-1,0,1),$\overrightarrow{AC}$=(-1,2,0),
設(shè)平面APC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=-x+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-x+2y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,1,2),
平面ACD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角P-AC-D的平面角為θ,
cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$,sinθ=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{\sqrt{5}}{2}$.
∴二面角P-AC-D的平面角的正切值為$\frac{\sqrt{5}}{2}$.
點評 本題考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=1 | B. | x=-1 | C. | y=1 | D. | y=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com