已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右兩個焦點(diǎn),過點(diǎn)F1作垂直于x軸的直線與雙曲線的兩條漸近線分別交于A,B兩點(diǎn),△ABF2是銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,2)
B、(1,
5
C、(1,5)
D、(
5
,+∞)
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,求出AB=
2bc
a
,F(xiàn)1F2=2c,△ABF2是銳角三角形,只要∠AF2B為銳角,即AF1<F1F2即可,從而可得結(jié)論.
解答: 解:根據(jù)題意,易得AB=
2bc
a
,F(xiàn)1F2=2c,
由題設(shè)條件可知△ABF2為等腰三角形,
△ABF2是銳角三角形,只要∠AF2B為銳角,即AF1<F1F2即可;
所以有
bc
a
<2c,
即4a2>c2-a2
解出e∈(1,
5
),
故選:B.
點(diǎn)評:本題考查雙曲線的離心率和銳角三角形的判斷,在解題過程中要注意隱含條件的挖掘.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(n,an)(n∈N*)是函數(shù)f(x)=
2x+4
x
圖象上的點(diǎn),數(shù)列{bn}滿足bn=an+λn,若數(shù)列{bn}是遞增數(shù)列,則正實(shí)數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AD=1,∠BAD=60°,
BC
=3
BF
.若
BD
AF
=-3,則
AB
的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在二面角α-AB-β的棱上有A、B兩點(diǎn),直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,CD=2
17
,則直線CD與平面α所成角的正弦值為( 。
A、
697
34
B、
3
51
64
C、
697
64
D、
3
51
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F(x)=f(x)+f(-x),且f′(x)存在,則F′(x)是(  )
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶的函數(shù)
D、不能判定其奇偶性的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=2aln(x+1)+x2-2x
(1)當(dāng)a>0時,討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)a=0時,在函數(shù)g(x)圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為P(x0,y0),試探究函數(shù)g(x)在Q(x0,g(x0))點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)a≠0時g(x)圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)A(1,-1)且與圓C:x2+y2=100切于點(diǎn)B(8,6)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點(diǎn)F.
(1)求橢圓Γ的方程;
(2)設(shè)點(diǎn)F關(guān)于x軸的對稱點(diǎn)為F′,過F′作兩條直線l1和l2,其斜率分別為k、k′,滿足k>0,k+k′=0,它們分別是橢圓Γ的上半部分相交于G,H兩點(diǎn),與x軸相交于A,B兩點(diǎn),使得|GH|=
16
5
,求證:△ABF′的外接圓過點(diǎn)F;
(3)設(shè)拋物線C的準(zhǔn)線為l,P,Q是拋物線上的兩個動點(diǎn),且滿足∠PFQ=
π
2
,線段PQ的中點(diǎn)為M,點(diǎn)M在l上的投影為N,求
|MN|
|PQ|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)n≥5):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:f(2,1)=f(1,1)+f(1,2);f(i,j)為數(shù)表中第i行的第j個數(shù).
(1)求第2行和第3行的通項(xiàng)公式f(2,j)和f(3,j);
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求f(i,1)關(guān)于i(i=1,2,…,n)的表達(dá)式;
(3)若f(i,1)=(i+1)(ai-1),bi=
1
aiai+1
,試求一個等比數(shù)列g(shù)(i)(i=1,2,…,n),使得Sn=b1g(1)+b22g(2)+…+bng(n)<
1
3
,且對于任意的m∈(
1
4
,
1
3
)均存在實(shí)數(shù)λ,當(dāng)n>λ時,都有Sn>m.

查看答案和解析>>

同步練習(xí)冊答案