分析 (Ⅰ)每天的贏利為T=日產(chǎn)量(x)×正品率(1-P)×盈利(A)-日產(chǎn)量(x)×次品率(P)×虧損,整理即可得到;
(Ⅱ)當(dāng)x>c時,每天的盈利額T=0;當(dāng)1≤c<84時,利用基本不等式可得x=c時,等號成立,利潤最大;當(dāng)84≤c<96時,當(dāng)x=84時,利潤最大.
解答 解:(Ⅰ)當(dāng)1≤x≤c時,T=(1-$\frac{1}{96-x}$)xA-$\frac{1}{96-x}$xA=[x-$\frac{3x}{2(96-x)}$]A,
當(dāng)x>c時,T=$\frac{1}{3}$xA-$\frac{2}{3}$x$\frac{A}{2}$=0,
$T=\left\{\begin{array}{l}[x-\frac{3x}{2(96-x)}]A\\ 0\end{array}\right.$$\begin{array}{l}{(1≤x≤c}&{x∈{N^*})}\\{(x>c}&{x∈{N^*})}\end{array}$…3分
(Ⅱ)(1)當(dāng)x>c時,每天的盈利額T=0;
(2)當(dāng)1≤x≤c且x∈N時,$T=[x-\frac{3x}{2(96-x)}]A$,
令96-x=t,則0<96-c≤t≤95(t∈N),
可得:$T=[96-t-\frac{3}{2}•\frac{96-t}{2t}]•A=(\frac{195}{2}-t-\frac{144}{t})A$,
令$g(t)=t+\frac{144}{t}$,
①當(dāng)1≤c<84時,12<96-c<t≤95,g(t)在區(qū)間(12,95)為單增函數(shù),
可得:$g{(t)_{min}}=g(96-c)=(96-c)+\frac{144}{96-c}$,$T≤[\frac{195}{2}-(96-C)-\frac{144}{96-C}]A=\frac{{189c-2{c^2}}}{192-2c}A>0$(當(dāng)且僅當(dāng)x=c時取等號),
∴當(dāng)x=c時,Tmax=$\frac{189c-2{c}^{2}}{192-2c}$A,…9分
②當(dāng)84≤c<96時,$g(t)≥2\sqrt{t•\frac{144}{t}=}24$,$T≤(\frac{195}{2}-24)A=\frac{147}{2}A>0$.
∴當(dāng)t=12即x=84時,Tmax=$\frac{147}{2}$A
綜上,當(dāng)1≤c<84時,Tmax=$\frac{189c-2{c}^{2}}{192-2c}$A;84≤c<96時,Tmax=$\frac{147}{2}$A…12分
點評 本題考查了利潤函數(shù)模型的應(yīng)用,并且利用基本不等式求得函數(shù)的最值問題,也考查了分段函數(shù)的問題,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1,-\frac{1}{3}$ | B. | $-1,\frac{1}{3}$ | C. | $1,-\frac{1}{3},0$ | D. | $-1,\frac{1}{3},0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m∥n | B. | m⊥n | C. | m、n異面 | D. | m∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com