過曲線y=x3+x-2上一點P0處的切線平行于直線y=4x+1,則點P0的一個坐標(biāo)是( 。
分析:根據(jù)曲線方程求出導(dǎo)函數(shù),因為已知直線4x-y-1=0的斜率為4,根據(jù)切線與已知直線平行得到斜率相等都為4,所以令導(dǎo)函數(shù)等于4得到關(guān)于x的方程,求出方程的解,即為切點P0的橫坐標(biāo),代入曲線方程即可求出切點的縱坐標(biāo).
解答:解:(1)∵y=x3+x-2,
∴y′=3x2+1,
∵過曲線y=x3+x-2上一點P0處的切線平行于直線y=4x+1,
∴3x2+1=4,解之得x=±1.
當(dāng)x=1時,y=0;
當(dāng)x=-1時,y=-4.
∴切點P0的坐標(biāo)為(1,0)或(-1,-4),
故選C.
點評:此題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,掌握兩直線垂直時斜率的關(guān)系,會根據(jù)一點和斜率寫出直線的方程,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過曲線y=x3+x-2上的點P的切線平行于直線y=4x-1,則切點P的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過曲線y=x3+x-2上的點P的切線平行于直線y=4x-1,則切點P的坐標(biāo)為( 。
A.(0,-1)或(1,0)B.(1,0)或(-1,-4)
C.(-1,-4)或(0,-2)D.(1,0)或(2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省寶雞市金臺區(qū)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

過曲線y=x3+x-2上的點P的切線平行于直線y=4x-1,則切點P的坐標(biāo)為( )
A.(0,-1)或(1,0)
B.(1,0)或(-1,-4)
C.(-1,-4)或(0,-2)
D.(1,0)或(2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市鰲江中學(xué)高三數(shù)學(xué)專題2:導(dǎo)數(shù)及其應(yīng)用(理科)(解析版) 題型:選擇題

過曲線y=x3+x-2上的點P的切線平行于直線y=4x-1,則切點P的坐標(biāo)為( )
A.(0,-1)或(1,0)
B.(1,0)或(-1,-4)
C.(-1,-4)或(0,-2)
D.(1,0)或(2,8)

查看答案和解析>>

同步練習(xí)冊答案