已知函數(shù)f(x)與函數(shù)y=(a>0)的圖象關(guān)于y=x對稱.

(1)求f(x);

(2)若無窮數(shù)列{an}滿足a1=1,Sn=a1+a2+…+an,且點Pn(,Sn)均在函數(shù)y=f(x)上,求a的值,并求數(shù)列{}的所有項的和(即前n項和的極限).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
1+x2

(1)由f(2)=
4
5
,f(
1
2
)=
1
5
f(3)=
9
10
,f(
1
3
)=
1
10
這幾個函數(shù)值,你能發(fā)現(xiàn)f(x)與f(
1
x
)
有什么關(guān)系?并證明你的結(jié)論;
(2)求f(1)+f(2)+f(3)+…+f(2010)+f(
1
2
)+f(
1
3
)+…+f(
1
2010
)
的值;
(3)判斷函數(shù)f(x)=
x2
1+x2
在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x-
3
4
.定義函數(shù)f(x)與實數(shù)m的一種符號運算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數(shù)值f(x)大于0的x的取值范圍;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在區(qū)間[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x-
3
4
.定義函數(shù)f(x)與實數(shù)m的一種符號運算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數(shù)值f(x)大于0的x的取值范圍;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在區(qū)間[0,4]上的最大值與最小值;
(3)是否存在一個數(shù)列{an},使得其前n項和Sn=4?f(n)+
7
2
n2
.若存在,求出其通項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=.

(1)求圖象的開口方向、對稱軸、頂點坐標、與x軸的交點坐標;

(2)求函數(shù)的單調(diào)區(qū)間、最值和零點;

(3)設(shè)圖象與x軸相交于(x1,0)、(x2,0),不求出根,求|x1-x2|;

(4)已知f(-)=,不計算函數(shù)值,求f(-);

(5)不計算函數(shù)值,試比較f(-)與f(-)的大;

(6)寫出使函數(shù)值為負數(shù)的自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x2
1+x2

(1)由f(2)=
4
5
,f(
1
2
)=
1
5
f(3)=
9
10
,f(
1
3
)=
1
10
這幾個函數(shù)值,你能發(fā)現(xiàn)f(x)與f(
1
x
)
有什么關(guān)系?并證明你的結(jié)論;
(2)求f(1)+f(2)+f(3)+…+f(2010)+f(
1
2
)+f(
1
3
)+…+f(
1
2010
)
的值;
(3)判斷函數(shù)f(x)=
x2
1+x2
在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案