橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長(zhǎng)為16,設(shè)線(xiàn)段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線(xiàn)段MN長(zhǎng)度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線(xiàn)與圓O的位置關(guān)系.
(1),
(2)直線(xiàn)l與圓O相交.
【解析】
試題分析:解:(1)設(shè)橢圓C的半焦距為c,則,即① 1分
又 ② 3分
聯(lián)立①②,解得,所以.
所以橢圓C的方程為. 5分
而橢圓C上點(diǎn)與橢圓中心O的距離為
,等號(hào)在時(shí)成立 7分,
而,則的最小值為,從而,則圓O的方程為. 9分
(2)因?yàn)辄c(diǎn)在橢圓C上運(yùn)動(dòng),所以.即.
圓心O到直線(xiàn)的距離. 12分
當(dāng),,則直線(xiàn)l與圓O相交. 14分
考點(diǎn):橢圓方程和圓的方程
點(diǎn)評(píng):主要是考查了橢圓的方程以及直線(xiàn)與圓的位置關(guān)系的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線(xiàn)與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿(mǎn)足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱(chēng)點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線(xiàn)與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿(mǎn)足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱(chēng)點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆北京市東城區(qū)高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本(xiàn)與橢圓相交于、兩點(diǎn). ①若線(xiàn)段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦
點(diǎn)構(gòu)成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本(xiàn)與橢圓相交于、兩點(diǎn). ①若線(xiàn)段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com