關(guān)于x不等式數(shù)學(xué)公式的解集為________.

(-∞,-1)∪(0,1)
分析:由不等式可得 ,即 x(x2-1)<0,解得 x<-1,或 1>x>0,由此得到不等式的解集.
解答:由不等式可得 ,即 x(x2-1)<0,解得 x<-1,或 1>x>0.
故不等式的解集為 (-∞,-1)∪(0,1),
故答案為(-∞,-1)∪(0,1).
點評:本題主要考查分式不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的不等式|x|+|x-1|<a(a∈R).若a=2,則不等式的解集為
 
;若不等式的解集為∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)和g(x)的圖象關(guān)于y軸對稱,且f(x)=x2+
1
2
x
.則不等式g(x)≥f(x)-|x-4|的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
2+x
1-x
≥1
的解集為A,關(guān)于x的不等式(
1
2
)2x2-a-x(a∈R)
的解集為B,全集U=R,求使CuA∩B=B的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)若函數(shù)f(x)=x3+ax2+bx+c在R上有三個零點,且同時滿足:
①f(1)=0;
②f(x)在x=0處取得極大值;
③f(x)在區(qū)間(0,1)上是減函數(shù).
(Ⅰ)當(dāng)a=-2時,求y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若g(x)=1-x,且關(guān)于x的不等式f(x)≥g(x)的解集為[1,+∞),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案