【題目】已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)在如圖的正視圖中,如果點A為所在線段中點,點B為頂點,求在幾何體側(cè)面上從點A到點B的最短路徑的長.
【答案】
(1)解:由三視圖知:幾何體是一個圓錐與一個圓柱的組合體,且圓錐與圓柱的底面半徑為2,母線長分別為2 、4,
其表面積是圓錐的側(cè)面積、圓柱的側(cè)面積和圓柱的一個底面積之和.
S圓錐側(cè)= ×2π×2×2 =4 π;
S圓柱側(cè)=2π×2×4=16π;
S圓柱底=π×22=4π.
∴幾何體的表面積S=20π+4 π;
(2)解:沿A點與B點所在母線剪開圓柱側(cè)面,如圖:
則AB= = =2 ,
∴以從A點到B點在側(cè)面上的最短路徑的長為2 .
【解析】(1)幾何體是一個圓錐與一個圓柱的組合體,由三視圖判斷圓錐與圓柱的底面半徑與母線長,根據(jù)其表面積是圓錐的側(cè)面積、圓柱的側(cè)面積和圓柱的一個底面積之和,代入公式計算;(2)利用圓柱的側(cè)面展開圖,求得EB的長,再利用勾股定理求AB的圓柱面距離.
【考點精析】本題主要考查了由三視圖求面積、體積的相關知識點,需要掌握求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側(cè)面的面積才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】二項式的展開式中只有第6項的二項式系數(shù)最大,且展開式中的第3項的系數(shù)是第4項的系數(shù)的3倍,則的值為( )
A. 4 B. 8 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是, 的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的通項公式;
(Ⅲ)在(Ⅱ)的條件下,設,問是否存在實數(shù)使得數(shù)列()是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的一個極值點, 和1是的兩個零點,且,求的值;
(2)若,且是的兩個極值點,求證:當時, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應數(shù)據(jù):
如果y與x之間具有線性相關關系.
(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預測當廣告費支出為9百萬元時的銷售額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com