【題目】在多面體中,四邊形是正方形,平面平面.

(1)求證:平面;

(2)在線段上是否存在點,使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.

【答案】(1)證明見解析;(2)答案見解析.

【解析】

(1)由面面垂直的性質(zhì)定理證明線面垂直即可;

(2)在平面DAE內(nèi),過DAD的垂線DH,以點D為坐標原點,DA,DCDH所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用平面FAG的法向量和平面EAD的法向量求二面角的余弦值即可確定線段上是否存在點.

(1)∵平面ADE⊥平面ABCD,平面ADE平面ABCD=AD,

正方形中CDAD,∴CD⊥平面ADE.

(2)由(1)知平面ABCD⊥平面AED.

在平面DAE內(nèi),過DAD的垂線DH,則DH⊥平面ABCD,

以點D為坐標原點,DA,DCDH所在直線分別為x軸,y軸,z軸建立空間直角坐標系,

,,

,

設(shè),則.

設(shè)平面FAG的一個法向量,則,

,即,

可得:

易知平面EAD的一個法向量,

由已如得.

化簡可得:,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在國家積極推動美麗鄉(xiāng)村建設(shè)的政策背景下,各地根據(jù)當?shù)厣鷳B(tài)資源打造了眾多特色紛呈的鄉(xiāng)村旅游勝地.某人意圖將自己位于鄉(xiāng)村旅游勝地的房子改造成民宿用于出租,在旅游淡季隨機選取100天,對當?shù)匾延械牧g不同價位的民宿進行跟蹤,統(tǒng)計其出租率),設(shè)民宿租金為(單位:元/日),得到如圖所示的數(shù)據(jù)散點圖.

1)若用“出租率”近似估計旅游淡季民宿每天租出去的概率,求租金為388元的那間民宿在淡季內(nèi)的三天中至少有2天閑置的概率.

2)①根據(jù)散點圖判斷,哪個更適合于此模型(給出判斷即可,不必說明理由)?根據(jù)判斷結(jié)果求回歸方程;

②若該地一年中旅游淡季約為280天,在此期間無論民宿是否出租,每天都要付出的固定成本,若民宿出租,則每天需要再付出的日常支出成本.試用①中模型進行分析,旅游淡季民宿租金約定為多少元時,該民宿在這280天的收益達到最大?

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為;.

參考數(shù)據(jù):記,,,,

,,

,,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

(Ⅲ)設(shè),對任意恒有,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l過曲線Cyx2的焦點F,并與曲線C交于Ax1y1),Bx2y2)兩點.

1)求證:x1x2=﹣16;

2)曲線C分別在點AB處的切線(與C只有一個公共點,且C在其一側(cè)的直線)交于點M,求點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙一流大學就業(yè)部從該校2018年已就業(yè)的大學本科畢業(yè)生中隨機抽取了100人進行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:

1)將同一組數(shù)據(jù)用該區(qū)間的中點值作代表,求這100人月薪收入的樣本平均數(shù);

2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:

方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;

方案二:每人按月薪收入的樣本平均數(shù)的收;

用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱中,,,,為線段的中點.

)證明:平面;

)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個正方體中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個命題中,正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形的邊長為2,點的中點.以為圓心,為半徑,作弧交于點.若為劣弧上的動點,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn-n=2an-2),(nN*

1)證明:數(shù)列{an-1}為等比數(shù)列.

2)若bn=anlog2an-1),數(shù)列{bn}的前項和為Tn,求Tn

查看答案和解析>>

同步練習冊答案