A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{3}$或-$\sqrt{3}$ | D. | 1或-1 |
分析 由圓的方程找出圓心坐標與半徑r,利用點到直線的距離公式表示出圓心到直線y=kx+1的距離d,再由弦AB的長及圓的半徑,利用垂徑定理及勾股定理列出關于k的方程,求出方程的解即可得到k的值.
解答 解:由圓x2+y2=1,得到圓心(0,0),半徑r=1,
∵圓心到直線y=kx+1的距離d=$\frac{1}{\sqrt{{k}^{2}+1}}$,|AB|=$\sqrt{3}$,
∴|AB|=2r$\sqrt{{r}^{2}-6i72ltp^{2}}$,即|AB|2=4(r2-d2),
∴3=4(1-$\frac{1}{{k}^{2}+1}$),解得:k=$±\sqrt{3}$.
故選C.
點評 此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,點到直線的距離公式,垂徑定理,以及勾股定理,當直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=log2|x| | B. | y=3-x | C. | y=$\frac{1}{x}$ | D. | y=-x2+4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2-2x+3 | B. | y=($\frac{1}{2}$)x | C. | y=-$\frac{1}{x}$ | D. | y=|x-1| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com