甲、乙兩個籃球運動員相互沒有影響的站在罰球線上投球,其中甲的命中率為,乙的命中率為,現(xiàn)在每人都投球三次,且各次投球的結(jié)果互不影響.求

(Ⅰ)甲恰好投進兩球的概率;

(Ⅱ)乙至少投進一球的概率;

(Ⅲ)甲比乙多投進兩球的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙兩人各投球2次,求兩人共命中2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個籃球運動員互不影響地在同一位置上投球,命中率分別為
1
3
與p,且乙投球兩次均為命中的概率為
16
25

(1)求乙投球的命中率p;
(2)求甲投三次,至少命中一次的概率;
(3)若甲、乙二人各投兩次,求兩人共命中兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009年)甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為
1
2
3
4

(1)求乙投球2次都不命中的概率;
(2)若甲、乙各投球1次,兩人共命中的次數(shù)記為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個籃球運動員在某賽季的得分情況如右側(cè)的莖葉圖所示,則(  )

查看答案和解析>>

同步練習(xí)冊答案