精英家教網 > 高中數學 > 題目詳情
19.已知△ABC的內角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin B,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos2$\frac{B}{2}$-1),且$\overrightarrow{m}$∥$\overrightarrow{n}$∥n,則銳角B的值為( 。
A.$\frac{2π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

分析 由已知結合向量數量積的坐標運算可得$sin(2B+\frac{π}{3})=0$,再由B的范圍求得銳角B的值.

解答 解:∵$\overrightarrow{m}$=(2sin B,-$\sqrt{3}$),$\overrightarrow{n}$=(cosB,2cos2$\frac{B}{2}$-1),
∴由$\overrightarrow{m}∥\overrightarrow{n}$,可得$2sinBcosB+\sqrt{3}cos2B=2sin(2B+\frac{π}{3})=0$,
∵0<B<$\frac{π}{2}$,∴$\frac{π}{3}<2B+\frac{π}{3}<\frac{4π}{3}$,
則$2B+\frac{π}{3}=π$,
得$B=\frac{π}{3}$.
∴銳角B的值為$\frac{π}{3}$.
故選:D.

點評 本題考查平面向量的數量積運算,考查了三角函數的化簡求值,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=$\left\{\begin{array}{l}(2-a)x-12,x≤7\\{(a+2)^{x-6}},x>7\end{array}$是R上的增函數
(1)求實數a的取值范圍;
(2)若g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax(x∈[{1,4}])$的最小值為-$\frac{16}{3}$,試比較f(g(x))的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知函數$f(x)=sin({\frac{π}{2}-x})sinx-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{2}$,則f(x)的最小正周期為πf(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的值域為[0,1].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.直線方程為(3a+2)x+y+8=0,若直線不過第二象限,則a的取值范圍是$(-∞,-\frac{2}{3}]$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于$\frac{4}{15}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若sinα是5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)tan^2(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}$=( 。
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設平面直角坐標系原點與極坐標極點重合,x軸正半軸與極軸重合,若已知曲線C的極坐標方程為ρ2=$\frac{12}{{3{{cos}^2}θ+{{sin}^2}θ}}$,點F1,F(xiàn)2為其左右焦點,直線l的參數方程為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數,t∈R)
(1)求直線l的普通方程和曲線C的參數方程;
(2)求曲線C上的點到直線l的最大距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),離心率為$\frac{{\sqrt{3}}}{2}$,P、Q為其上兩動點,A為左頂點,且A到上頂點距離$\sqrt{5}$.
(1)求C方程;
(2)若PQ過原點,PA、QA與y軸交于M、N,問$\overrightarrow{AM}•\overrightarrow{AN}$是否為定值;
(3)若PQ過右焦點,問其斜率為多少時,|PQ|等于短軸長.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知x>1,y>2,且xy=2x+y+6,則x+2y的最小值是( 。
A.7B.9C.11D.13

查看答案和解析>>

同步練習冊答案