11.如圖,一張A4紙的長、寬分別為2$\sqrt{2}$a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是①②③④.(寫出所有正確命題的序號(hào)).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2

分析 利用圖形翻折,結(jié)合勾股定理,確定該多面體是以A,B,C,D為頂點(diǎn)的三棱錐,利用線面垂直,判定面面垂直,即可得出結(jié)論.

解答 解:長、寬分別為2$\sqrt{2}$a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,
使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,則
①由于$(\sqrt{2}a)^{2}+(\sqrt{2}a)^{2}=4{a}^{2}$,∴該多面體是以A,B,C,D為頂點(diǎn)的三棱錐,正確;
②∵AP⊥BP,AP⊥CP,∴AP⊥平面BCD,∵AP?平面BAD,∴平面BAD⊥平面BCD,正確;
③與②同理,可得平面BAC⊥平面ACD,正確;
④該多面體外接球的半徑為$\frac{\sqrt{5}}{2}$a,表面積為5πa2,正確.
故答案為①②③④.

點(diǎn)評(píng) 本題考查棱錐的結(jié)構(gòu)特征,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=π-arccos(sinx)則x<0時(shí),f(x)=( 。
A.arccos(sinx)B.π+arccos(sinx)C.-arccos(sinx)D.-π-arccos(sinx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l與橢圓C:$\frac{x^2}{4}+{y^2}=1$交于A,B兩點(diǎn),且|AB|=2,則直線l與圓x2+y2=1的位置關(guān)系為(  )
A.相離B.相交C.相切D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)P(0,-2),點(diǎn)A,B分別為橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右頂點(diǎn),直線BP交E于點(diǎn)Q,△ABP是等腰直角三角形,且$\overrightarrow{PQ}$=$\frac{3}{2}\overrightarrow{QB}$.
(1)求E的方程;
(2)設(shè)過點(diǎn)的動(dòng)直線l與E相交于M,N兩點(diǎn),當(dāng)坐標(biāo)原點(diǎn)O位于MN以為直徑的圓外時(shí),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{|x+1|+|x-3|-m}$的定義域?yàn)镽.
(Ⅰ)求m的取值范圍;
(Ⅱ)若m的最大值為n,解關(guān)于x的不等式:|x-3|-2x≤2n-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知球O的半徑為R,A,B,C三點(diǎn)在球O的球面上,球心O到平面ABC的距離為$\frac{\sqrt{3}}{2}$R,AB=AC=BC=2$\sqrt{3}$,則球O的表面積為( 。
A.$\frac{16}{3}$πB.16πC.$\frac{64}{3}$πD.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖,則該幾何體的表面積是(  )
A.$4+4\sqrt{3}$B.$4+6\sqrt{3}$C.$8+6\sqrt{3}$D.$8+8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖如圖所示(其中俯視圖中的圓弧是半圓),則該幾何體的體積為32+8π.

查看答案和解析>>

同步練習(xí)冊(cè)答案