當x=
 
時,函數(shù)y=x•2x有極小值為
 
考點:利用導數(shù)研究函數(shù)的極值
專題:計算題,導數(shù)的綜合應(yīng)用
分析:由題意求導y′=2x+xln2•2x=(1+ln2•x)2x,從而求函數(shù)的極值.
解答: 解:∵y′=2x+xln2•2x=(1+ln2•x)2x,
令(1+ln2•x)2x=0得,
x=-log2e,
在x=-log2e附近,左側(cè)y′<0,
右側(cè)y′>0;
故當x=-log2e時,函數(shù)y=x•2x有極小值為-
log2e
e
,
故答案為:-log2e,-
log2e
e
點評:本題考查了導數(shù)的綜合應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的圖象關(guān)于原點對稱,g(x)=f(x)+3,且g(1)=5,則g(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(-
π
6
-2x).求:
(1)函數(shù)y=sin(-
π
6
-2x)單調(diào)遞減區(qū)間,對稱軸,對稱中心;
(2)當x∈[0,
π
2
]時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(ex+1)(lnx-1)(e為自然對數(shù)的底數(shù)).
(I)求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若點P(e,f(e)),且點A(x1,f(x1)),B(x2,f(x2))滿足條件:(1-lnx1)(1-lnx2)=1(x1≠x2).判斷A,B,P三點是否可以構(gòu)成直角∠APB?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:sin2α•tanα+cos2α•cotα+2sinα•cosα=tanα+cotα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
2
-φ)=
1
3
,且|φ|<
π
2
,則sin(2014π+φ)等于(  )
A、-
2
2
3
B、
2
2
3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(1+3x)(1-2x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求(a0+a2+a42-(a1+a3+a52;
(2)求a1+2a2+3a3+4a4+5a5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出函數(shù)y=log 
1
3
x的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an},{bn}是項數(shù)相同的等比數(shù)列,求證{an•bn}、{
an
bn
}也是等比數(shù)列.

查看答案和解析>>

同步練習冊答案