5.如果一個三角形最大角是最小角的2倍,且三邊是連續(xù)的自然數(shù),則這個三角形的邊長分別為( 。
A.2,3,4B.3,4,5C.4,5,6D.不存在

分析 根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為n-1,n,n+1,三個角分別為α,π-3α,2α,由n-1,n+1,sinα,以及sin2α,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出cosα,然后利用余弦定理得到(n-1)2=(n+1)2+n2-2(n-1)n•cosα,將表示出的cosα代入,整理后得到關(guān)于n的方程,求出方程的解得到n的值,從而得到三邊長的值,

解答 解:設(shè)三角形三邊是連續(xù)的三個自然n-1,n,n+1,三個角分別為α,π-3α,2α,
由正弦定理可得:$\frac{n-1}{sinα}=\frac{n+1}{sin2α}$,
∴cosα=$\frac{n+1}{2(n-1)}$,
再由余弦定理可得:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,
化簡可得:n2-5n=0,解得:n=5或n=0(舍去),
∴n=5,故三角形的三邊長分別為:4,5,6
故選C.

點評 本題主要考察正弦定理在解三角形中的應(yīng)用問題.解決本題的關(guān)鍵在于根據(jù)條件得到:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,化簡,得:n2-5n=0,進而求出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果小明家的瓷都晚報規(guī)定在每天下午的4:30~6:30之間的任何一個時間隨機地被送到,他一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐,瓷都晚報在晚餐前被送到小明家的概率是$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,則f(log23)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)(i-1-i)3的虛部為( 。
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某高校有正教授120人,副教授100人,講師80人,助教60人,現(xiàn)用分層抽樣的方法從以上所有老師中抽取一個容量為n的樣本,已知從講師中抽取人數(shù)為16人,那么n=72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x2+x-lnx在x=a處的切線與直線2x+2y-1=0垂直,則a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函數(shù)y=f(x)-$\frac{t}{3}$x(t>0)至少有9個零點,則t的取值范圍為( 。
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)$z=\frac{4-2i}{1+i}$(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,I為△PF1F2的內(nèi)心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,則雙曲線的離心率為( 。
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊答案