雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,若的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且拋物線的準(zhǔn)線交雙曲線所得的弦長(zhǎng)為4,則雙曲線的實(shí)軸長(zhǎng)為( )

A.6 B.2 C. D.

 

D

【解析】

試題分析:設(shè)雙曲線的方程為.

由已知,拋物線的焦點(diǎn)為,準(zhǔn)線方程為,即雙曲線中,;將代人雙曲線方程,解得,又拋物線的準(zhǔn)線交雙曲線所得的弦長(zhǎng)為, 所以聯(lián)立得,,解得,,

故雙曲線的實(shí)軸長(zhǎng)為,選.

考點(diǎn):拋物線的幾何性質(zhì),雙曲線的幾何性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省菏澤市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù))的最小正周期為

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象;若上至少含有10個(gè)零點(diǎn),求b的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省煙臺(tái)市高三統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)數(shù)列{bn}滿足,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都實(shí)驗(yàn)外國(guó)語高三11月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

下列曲線中焦點(diǎn)坐標(biāo)為的是( )

A. B.y=-4x2

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省煙臺(tái)市高三統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

設(shè),則二項(xiàng)式的展開式中含有的項(xiàng)是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列滿足,前n項(xiàng)和為Sn,Sn=.

(1)求證:是等比數(shù)列;

(2)記,當(dāng)時(shí)是否存在正整數(shù)m,都有?如果存在,求出m的值;如果不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知直線l過點(diǎn),且與曲線相切,則直線的方程為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省高三10月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量。

(1)求的最小正周期和單調(diào)減區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,在△ABC中,角A、B、C的對(duì)邊分別為,若,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省巴蜀好教育聯(lián)盟12月大聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)甲、乙兩家藥廠生產(chǎn)同一型號(hào)藥品,在某次質(zhì)量檢測(cè)中,兩廠各有5份樣品送檢,檢測(cè)的平均得分相等(檢測(cè)滿分為100分,得分高低反映該樣品綜合質(zhì)量的高低).成績(jī)統(tǒng)計(jì)用莖葉圖表示如下:

(1)求a;

(2)某醫(yī)院計(jì)劃采購(gòu)一批該型號(hào)藥品,從質(zhì)量的穩(wěn)定性角度考慮,你認(rèn)為采購(gòu)哪個(gè)藥廠的產(chǎn)品比較合適?

(3)檢測(cè)單位從甲廠送檢的樣品中任取兩份作進(jìn)一步分析,在抽取的兩份樣品中,求至少有一份得分在(90,100]之間的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案